View More View Less
  • 1 National R&D Institute for Non-Ferrous and Rare Metals, 102 Biruintei Blvd., Pantelimon, Ilfov, Romania
  • | 2 S.C. METAV C-D S.A, 31 C.A. Rosetti Str., Bucharest, Romania
Restricted access

Abstract

Dendrimers or biofunctionalized dendrimers can be assembled onto magnetic iron oxide nanoparticles to stabilize or functionalize inorganic nanoparticles. Carboxylated poly(amidoamine) PAMAM dendrimers (generation 4.5) have been used for the synthesis of iron oxide nanoparticles, resulting nanocomposites with potential biomedical applications. The present paper aims to systematically investigate the thermal behaviour of nanostructured hybrids based on ferric oxide and PAMAM dendrimers, by differential scanning calorimetry (DSC) technique. The novelty consists both in synthesis procedure of hybrid nanostructures as well as in DSC approach of these nanocomposites. For the first time, we propose a new method to prepare Fe2O3—dendrimer nanocomposite, using soft chemical process at high pressure. Commercial PAMAM dendrimers with carboxylic groups on its surface were used. When high pressure is applied, polymeric structures suffer morphological changes leading to hybrid nanostructures' formation. In the same time, crystallinity of inorganic nanoparticles is provided. DSC results showed an increase in thermal stability of composites as compared to commercial dendrimers. This could be due to the formation of strong interactions between ferric oxide and carboxyl groups, as confirmed by Fourier transform infrared spectroscopy. Electron microscopy analysis (SEM/EDX) and size measurements were performed to demonstrate the existence of nanosized particles.

  • 1. da Silva Santos JL . Functionalization of dendrimers for improved gene delivery to mesenchymal stem cells. PhD Thesis, University of Madeira; (2009).

    • Search Google Scholar
    • Export Citation
  • 2. Kateb, B, Chiu, K, Black, KL, Yamamoto, V, Khalsa, B, Ljubimova, JY, Ding, H, Patil, R, Portilla-Arias, JA, Modo, M, Moore, DF, Farahani, K, Okun, MS, Prakash, N, Neman, J, Ahdoot, D, Grundfest, W, Nikzad, S, Heiss, JD 2011 Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: What should be the policy?. NeuroImage 54:S106S124 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Sakamoto, JH AL van de Ven Godin, B, Blanco, E, Serda, RE, Grattoni, A, Ziemys, A, Bouamrani, A, Hu, T, Ranganathan, SI E De Rosa Martinez, JO, Smid, CA, Buchanan, RM, Lee, S-Y, Srinivasan, S, Landry, M, Meyn, A, Tasciotti, E, Liu, X, Decuzzi, P, Ferrari, M 2010 Enabling individualized therapy through nanotechnology. Pharmacol Res 62:5789 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Balogh, L, Bielinska, A, Eichman, JD, Valluzzi, R, Lee, I, Baker, JR, Lawrence, TS, Khan, MK 2002 Dendrimer nanocomposites in medicine. Chem Today 20:3540.

    • Search Google Scholar
    • Export Citation
  • 5. Barrett, T, Ravizzini, G, Choyke, PL, Kobayashi, H 2009 Dendrimers in medical nanotechnology. Application of dendrimer molecules in bioimaging and cancer treatment. IEEE Eng Med Biol Mag 28:1222 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Tomalia, DA 2006 Dendrimers: key properties of importance to nanomedicine. Nanomedicine 2:307.

  • 7. Strable, E, Bulte, JWM, Moskowitz, B, Vivekanandan, K, Allen, M, Douglas, T 2001 Synthesis and characterization of soluble iron oxide-dendrimer composites. Chem Mater 13:22012209 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Saboktakin, MR, Maharramov, A, Ramazanov, MA 2010 Synthesis and characterization of MRI-detectable magnetic dendritic nanocarriers. Polym Plast Technol Eng 49:104109 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Liu, S, Lin, Q, Zhang, X, He, X, Xing, X, Lian, W, Huang, J 2011 Electrochemical immunosensor for salbutamol detection based on CS–Fe3O4–PAMAM–GNPs nanocomposites and HRP_MWCNTs–Ab bioconjugates for signal amplification. Sens Actuators B 156:7178 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Menjoge, AR, Kannan, RM, Tomalia, DA 2010 Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today 15:171185 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Mishra, MK, Kotta, K, Hali, M, Wykes, S, Gerard, HC, Hudson, AP, Whittum-Hudson, JA, Kannan, RM 2011 PAMAM dendrimers-azithromycin conjugate nanodevices for the treatment of Chlamydia trachomatis infections. Nanomed Nanotechnol Biol Med 7:935944 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Tse, C, Zohdy, MJ, Ye, JY, O’Donnell, M, Lesniak, W, Balogh, L 2011 Enhanced optical breakdown in KB cells labelled with folate-targeted silver-dendrimer composite nanodevices. Nanomed Nanotechnol Biol Med 7:97106 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Sekhon, BS, Kamboj, SR 2010 Inorganic nanomedicine–part 2. Nanomed Nanotechnol Biol Med 6:612618 .

  • 14. Gaur, MS, Rathore, BS, Singh, PK, Indolia, A, Awasthi, AM, Bhardwaj, S 2010 Thermally stimulated current and differential scanning calorimetry spectroscopy for the study of polymer nanocomposites. J Therm Anal Calorim 101:315321 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Lagashetty, A, Vijayanand, H, Basavaraja, S, Bedre, MD, Venkataraman, A 2010 Preparation, characterization, and thermal studies of γ-Fe2O3 and CuO dispersed polycarbonate nanocomposites. J Therm Anal Calorim 99:577581 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Chang, YL, Meng, XL, Zhao, YL, Li, K, Zhao, B, Zhu, M, Li, YP, Chen, XS, Wang, JY 2011 Novel water-soluble and pH-responsive anticancer drug nanocarriers: doxorubicin–PAMAM dendrimer conjugates attached to superparamagnetic iron oxide nanoparticles (IONPs). J Colloid Interface Sci 363:403409 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Baykal A , Toprak MS, Durmus Z, Senel M, Sozeri H, Demir A. Synthesis and characterization of dendrimer-encapsulated iron and iron-oxide nanoparticles. J Supercond Nov Magn. doi: (published online: 09 February 2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Zhang, Y, Liu, J-Y, Yang, F, Zhang, Y-J, Yao, Q, Cui, T-Y, Zhao, X, Zhang, Z-D 2009 A new strategy for assembling multifunctional nanocomposites with iron oxide and amino-terminated PAMAM dendrimers. J Mater Sci Mater Med 20:24332440 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Shi, XY, Thomas, TP, Myc, LA, Kotlyar, A JR Baker Jr 2007 Synthesis, characterization, and intracellular uptake of carboxyl-terminated poly(amidoamine) dendrimer-stabilized iron oxide nanoparticles. Phys Chem Chem Phys 9:57125720 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Wang, SH, Shi, XY M Van Antwerp Cao, Z, Swanson, SD, Bi, XD JR Baker Jr 2007 Dendrimer-functionalized iron oxide nanoparticles for specific targeting and imaging of cancer cells. Adv Funct Mater 17:30433050 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Landmark, KJ, DiMaggio, S, Ward, J, Kelly, C, Vogt, S, Hong, S, Kotlyar, A, Myc, A, Thomas, TP, Penner-Hahn, JE, Baker, JR, Banaszak Holl, MM, Orr, BG 2008 Synthesis, characterization, and in vitro testing of superparamagnetic iron oxide nanoparticles targeted using folic acid-conjugated dendrimers. ACS Nano 2:773783 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Bronstein, LM, Shifrina, ZB 2009 Nanoparticles in dendrimers: from synthesis to application. Nanotechnol Russ 4:576608 .

  • 23. Popescu L-M , Piticescu RM, Doni G, Danani A. Interfacial interactions of Fe3+ with PAMAM dendrimer in different pressure conditions. Molecular dynamics. Rev Roum Chim; 2011.

    • Search Google Scholar
    • Export Citation
  • 24. Lin, S-T, Maiti, PK WA Goddard III 2005 Dynamics and thermodynamics of water in PAMAM dendrimers at subnanosecond time scales. J Phys Chem B 109:86638672 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Hay, G, Mackay, ME, Hawker, CJ 2001 Thermodynamic properties of dendrimers compared with linear polymers: general observations. J Polym Sci Part B Polym Phys 39:17661777 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Staszczuk, P 2008 Surface properties of nanoparticles ME Brown PK Gallagher eds. Handbook of thermal analysis and calorimetry. Recent advances, techniques and applications 5 Elsevier Amsterdam 343347.

    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)