Authors:
Yuki Kitahara Department of Chemistry, Meisei University, Hodokubo 2-1-1, Hino, Tokyo 191-8506, Japan

Search for other papers by Yuki Kitahara in
Current site
Google Scholar
PubMed
Close
,
Ko Okuyama Department of Chemistry, Meisei University, Hodokubo 2-1-1, Hino, Tokyo 191-8506, Japan

Search for other papers by Ko Okuyama in
Current site
Google Scholar
PubMed
Close
,
Keita Ozawa Department of Chemistry, Meisei University, Hodokubo 2-1-1, Hino, Tokyo 191-8506, Japan

Search for other papers by Keita Ozawa in
Current site
Google Scholar
PubMed
Close
,
Takuya Suga Department of Chemistry, Meisei University, Hodokubo 2-1-1, Hino, Tokyo 191-8506, Japan

Search for other papers by Takuya Suga in
Current site
Google Scholar
PubMed
Close
,
Seiji Takahashi Department of Chemistry, Meisei University, Hodokubo 2-1-1, Hino, Tokyo 191-8506, Japan

Search for other papers by Seiji Takahashi in
Current site
Google Scholar
PubMed
Close
, and
Toshihiro Fujii Department of Chemistry, Meisei University, Hodokubo 2-1-1, Hino, Tokyo 191-8506, Japan

Search for other papers by Toshihiro Fujii in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Ion-attachment mass spectrometry with a temperature-programed direct probe allows the detection of intact pyrolysis products. It, therefore, offers the opportunity to monitor directly thermal byproducts on a real-time basis and potentially to detect thermally unstable products. With this technique, we investigated the thermal decomposition of polyacrylamide (PAA). Pyrolysis of PAA at around 450 °C produces many products (e.g., amides, imides, nitriles, ketones, aldehydes, and acrylamide oligomers). Acrylamide, which is a possible carcinogen, is produced abundantly in various industries, and, therefore, continues to be a cause for concern. We also investigated the kinetics of the thermal decomposition of PAA, and observed that the degradation of acrylamide obeys Arrhenius kinetics, which allowed us to correlate the rate constant with the absolute temperature and the activation energy. The activation energy of thermal decomposition was calculated from selected ion-monitoring curves of acrylamide.

  • 1. Smith, EA, Oehme, FW 1991 Acrylamide and polyacrylamide: a review of production, use, environmental fate and neurotoxicity. Rev Environ Health 9:215228 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Stephens SH . Final report on the safety assessment of polyacrylamide. J Am Coll Toxicol. 1991;10: 193202.

  • 3. Loren, SB, Fikry, FA, Frank, WB, Rodrick, DL, Robert, ES 1999 Analysis of Residual Acrylamide In Field Crops. J Chromatogr Sci 37:240244.

    • Search Google Scholar
    • Export Citation
  • 4. Christian DG . Quantitation of acrylamide (and polyacrylamide): critical review of methods for trace determination/formulation analysis & Future-research recommendations. The California Public Health Foundation; 1988. Retrieved 30 June 2010.

    • Search Google Scholar
    • Export Citation
  • 5. Tareke, E, Rydberg, P, Karlsson, P, Eriksson, S, Toernqvist, M 2002 Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J Agric Food Chem 50 17 49985006 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. JD Van Dyke Kasperski, KL 1993 Thermogravimetric study of polyacrylamide with evolved gas analysis. J Polym Sci A Polym Chem 31 7 18071823 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Leung, WM, Axelson, DE JD Van Dyke 1987 Thermal degradation of polyacrylamide and poly(acrylamide-co-acrylate). J Polym Sci A Polym Chem 25 7 18251846 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Tutas, M, Saglam, M, Yuksel, M, Guler, C 1987 Investigation of the thermal decomposition kinetics of polyacrylamide using a dynamic TG technique. Thermochim Acta 111:121126 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Vers, LMV 1999 Determination of acrylamide monomer in polyacrylamide degradation studies by high-performance liquid chromatography. J Chromatogr Sci 37 12 486494.

    • Search Google Scholar
    • Export Citation
  • 10. Tutas, M, Saglam, M, Yuksel, M 1991 Pyrolysis product of polyacrylamide by pyrolysis–gas chromatography. J Anal Appl Pyrolysis 22 1–2 129137 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Smith, EA, Oehme, FW 1993 Rapid direct analysis of acrylamide residue in polyacrylamide in polyacrylamide thickening agents. J Chromatogr Sci 31:192195.

    • Search Google Scholar
    • Export Citation
  • 12. Smith, EA, Prues, SL, Oehme, FW 1996 Environmental degradation of polyacrylamides. I. Effects of artificial environmental conditions: Temperature, Light, and pH. Ecotoxicol Environ Saf 1996 35 121135 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. NIST Chemistry Webbook. In: Mass spectrum (electron ionization). http://webbook.nist.gov/cgi/cbook.cgi?ID=C79061&Units=SI&Mask=200#Mass-Spec.

    • Search Google Scholar
    • Export Citation
  • 14. Fujii T . Ion attachment mass spectrometry, “encyclopedia of mass spectrometry, Volume 6: ionization methods”: In: Michael Gross, editor. America Society for Mass Spectrometry. New York: Elsevier; 2007. pp. 327334.

    • Search Google Scholar
    • Export Citation
  • 15. Fujii, T 2000 Alkali-metal ion/molecule association reactions and their applications to mass spectrometry. Mass Spectrom Rev 19:111138 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Kitahara, Y, Takahashi, S, Kuramoto, N, Sala, M, Tsugoshi, T, Sablier, M, Fujii, T 2009 Ion attachment mass spectrometry combined with infrared image furnace for thermal analysis: evolved gas analysis studies. Anal Chem 81 8 31553158 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Takahashi, S, Tsukagoshi, M, Kitahara, Y, Juhasz, M, Fujii, T 2010 Design and performance of an evolved gas analysis ion attachment mass spectrometer. Rapid Commun Mass Spectrom 24:26252630 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Kitahara, Y, Takahashi, S, Tsukagoshi, M, Fujii, T 2010 Formation of bisphenol A by thermal degradation of poly(bisphenol A carbonate). Chemosphere 80:12811284 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Takahashi, S, Kitahara, Y, Nakamura, M, Shiokawa, Y, Fujii, T 2010 Temperature-resolved thermal analysis of cisplatin by means of Li+ ion attachment mass spectrometry. Phys Chem Chem Phys 12:39103913 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Knümann, R, Bockhorn, H 1994 Investigation of the kinetics of pyrolysis of PVC by TG-MS-analysis. Combust Sci Technol 101 1–6 285299 .

  • 21. Toth, I, Szepvolgyi, J, Jakab, E, Szabo, P, Szekely, T 1990 Thermal decomposition of a bentonite–polyacrylamide complex. Thermochim Acta 170:155166 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2024 7 0 0
May 2024 16 3 3
Jun 2024 13 1 1
Jul 2024 34 0 0
Aug 2024 19 0 0
Sep 2024 49 0 0
Oct 2024 31 0 0