CaAl12O19 was synthesised using three different precursors: (a) a polyesteric type precursor resulted from the traditional Pechini method; (b) a polyesteric type precursor resulted from the reaction between citric acid and calcium and aluminum nitrates; and (c) a polymeric type precursor resulted from the reaction between acrylic acid and calcium an aluminum nitrates. The thermal behavior of the three precursors used in the CaAl12O19 synthesis was monitored to underline the thermal effects associated to the CaAl12O19 formation. Thermal analyses performed on precursors do not reveal clear differences regarding the thermal effects assigned to calcium aluminates formation, at temperatures over 800 °C. In contrast, thermal analysis of samples pre-fired at 200 °C, and especially at 600 °C, show clear differences between samples obtained in different ways. It is noted that in samples obtained from acrylic acid and nitrates, and citric acid and nitrates, CA6 is practically single phase after calcination at 1,200 °C. However, in the sample obtained from citric acid, ethylene glycol, and nitrates, calcined at 1,200 °C, CA6 is present along with CA2 and α-Al2O3.
1. Ianoş R , Lazău I, Păcurariu C, Barvinschi P. Peculiarities of CaO·6Al2O3 formation by using low-temperature combustion synthesis. Eur J Inorg Chem. 2008;6: 925–30.
2. Altay, A, Carter, CB, Arslan, I, Gülgün, MA 2009 Crystallization of CaAl4O7 and CaAl12O19 powders. Philos Mag 89 7 605–621 .
3. Nagaoka, T, Tsugoshi, T, Hotta, Y, Yasuoka, M, Watari, K 2006 Forming and sintering of porous calcium-hexaaluminate ceramics with hydraulic alumina. J Mater Sci 41:7401–7405 .
4. Singh, VK, Sharma, KK 2002 Low-temperature synthesis of calcium hexa-aluminate. J Am Ceram Soc 84 4 769–772.
5. Chandradass, J, Bae, DS, Kim, KH 2009 Synthesis of calcium hexaaluminate (CaAl12O19) via reverse micelle process. J Non Cryst Solids 335:2429–2432 .
6. López-Delgado, A, López, FA, Gonzalo-Delgado, L, López-Andrés, S, Alguacil, FJ 2010 Study by DTA/TG of the formation of calcium aluminate obtained from aluminium hazardous waste. J Therm Anal Calorim 99:999–1004 .
7. Singh, V, Gundu Rao, TK, Zhu, JJ 2007 Synthesis, photoluminescence, thermoluminescence and electron spin resonance investigation of CaAl12O19:Eu phosphor. J Lumin 126:1–6 .
8. Cinibulk, MK 1999 Effect of divalent cations on the synthesis of citrate-gel-derived lanthanum hexaaluminate powders and films. J Mater Res 14 9 3581–3593 .
9. Asmi, D, Low, IM 1998 Physical and mechanical characteristics of in situ alumina/calcium hexaaluminate composites. J Mater Sci Lett 17:1735–1738 .
10. Vishista, K, Gnanam, FD 2005 Sol–gel synthesis and characterization of alumina–calcium hexaaluminate composites. J Am Ceram Soc 88 5 1175–1179 .
11. Costa, G, Ribeiro, MJ, Hajjaji, W, Seabra, MP, Labrincha, JA, Dondi, M, Cruciani, G 2009 Ni-doped hibonite (CaAl12O19): a new turquoise blue ceramic pigment. J Eur Ceram Soc 29:2671–2678 .
12. Murata, T, Tanoue, T, Iwasaki, M, Morinaga, K, Hase, T 2005 Fluorescence properties of Mn4+ in CaAl12O19 compounds as red-emitting phosphor for white LED. J Lumin 114:207–212 .
13. Brik, MG, Pan, YX, Liu, GK 2011 – Spectroscopic and crystal field analysis of adsorption and photoluminescence properties of red phosphor CaAl12O19:Mn4+ modified by MgO. J Alloys Compd 509:1452–1456 .
14. Pan YX , Liu GK. Influence of Mg2+ on luminescence efficiency and charge compensating mechanism in phosphor CaAl12O19:Mn4+. J Lumin. 2010. doi: .
15. Nie, ZG, Zhang, JH, Zhang, X, Lü, SZ, Ren, XG, Zhang, GB, Wang, XJ 2007 Photon cascade luminescence in CaAl12O19:Pr, Cr. J Sol State Chem 180:2933–2941 .
16. Banerjee, S, Kumar, A, Sujatha Devi, P 2011 Preparation of nanoparticles of oxides by the citrate–nitrate process. J Therm Anal Calorim 104:859–867 .
17. Singh, RK, Yadav, A, Narayan, A, Chandra, M, Verma, RK 2012 Thermal, XRD, and magnetization studies on ZnAl2O4 and NiAl2O4 spinels, synthesized by citrate precursor method and annealed at 450 and 650 °C. J Therm Anal Calorim 107:205–210 .
18. Bernardi, MIB, Araújo, VD, Mesquita, A, Frigo, GJM, Maia, LJQ 2009 Thermal, structural and optical properties of Al2CoO4-crocoite composite nanoparticles used as pigments. J Therm Anal Calorim 97:923–928 .
19. MFP Da Silva FM De Souza Carvalho T Da Silva Martins MC De Abreu Fantini Isolani, PC 2010 The role of citrate precursors on the morphology of lanthanide oxides obtained by thermal decomposition. J Therm Anal Calorim 99:385–390 .
20. Yuan, X, Xu, Y, He, Y 2007 Synthesis of Ca3Al2O6 via citric acid precursor. Mater Sci Eng A 447:142–145 .
21. Lazău, I, Păcurariu, C, Băbuţă, R 2011 The use of thermal analysis in the study of Ca3Al2O6 formation by the polymeric precursor method. J Therm Anal Calorim 105 2 427–434 .