View More View Less
  • 1 New Technology—Research Centre in the Westbohemian Region, West Bohemian University, Universitní 8, 30114, Pilsen, Czech Republic
Restricted access

Abstract

Modeling tradition is reviewed within its historical maturity from Plato do Penrose. Metaphors in nonisothermal kinetics achieved a wide application mostly employing models derived by means of undemanding isothermal descriptions. Geometrical basis of such modeling is revised and discussed in terms of symmetrical and asymmetrical (pentagonal) schemes. The properties of interface (reaction separating line) are found decisive in all cases of heterogeneous kinetics. Application of fractal geometry is accredited, and associated formal kinetic models based on nonintegral power exponents are acknowledged. Typical erroneous beliefs are dealt with showing common kinetic misinterpretation of measured data and associated mathematical manipulability of kinetic equations. The correction of a measured DTA peak is mentioned assuming the effects of heat inertia and temperature gradients.

  • 1. Šesták, J 1979 Philosophy of non-isothermal kinetics. J Therm Anal. 16:520603.

  • 2. Šesták, J 1985 Mystery of derivatives in the nonisothermal rate equation. Thermochim Acta 83:391394 .

  • 3. Šesták, J 1988 Nonisothermal kinetics: art, debate or applied science. J Therm Anal 33:12631267 .

  • 4. Šesták J . Plenary lectures: nonisothermal kinetics. In: Wiedemann HG, editors. The proceedings: thermal analysis, conference 3rd ICTA in Davos, Birghausser, Basel; 1972. p. 39.

    • Search Google Scholar
    • Export Citation
  • 5. Šesták J . Rationale and fiction of thermochemical kinetics. In: Vitez I, editor. The proceedings: the 34th conference of North American Thermal Analysis Society, Bowling Green; 2006. p. 689.

    • Search Google Scholar
    • Export Citation
  • 6. Šestak J . Citation records and some forgotten anniversaries in thermal analysis. J Therm Anal Calorim. 2011 (in press). doi: .

  • 7. Šatava, V 1961 Utilization of thermographic methods for studying reaction kinetics. Silikáty (Prague) 1:6872 (in Czech).

  • 8. Proks, I 1961 Influence of pace of temperature increase on the quantities important for the evaluation of DTA curves. Silikaty (Prague) 1:114121 (in Czech).

    • Search Google Scholar
    • Export Citation
  • 9. Šesták, J 1963 Temperature effects influencing kinetic data accuracy obtained by thermographic measurements under constant heating. Silikaty (Prague) 7:125131 (in Czech).

    • Search Google Scholar
    • Export Citation
  • 10. Garn, PD 1965 Thermoanalytical methods of investigation Academic New York.

  • 11. Flynn, JH, Wall, LA 1966 General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand 70A:487 .

  • 12. Šesták, J 1967 Review of kinetic data evaluation from nonisothermal and isothermal data. Silikáty (Prague) 11:153190 (in Czech).

    • Search Google Scholar
    • Export Citation
  • 13. Murgulescu, JG, Segal, E 1967 Reviewing kinetic data evaluations by thermal analysis. St Cerc Chim Tom (Bucharest) 15:261 (in Romanian).

    • Search Google Scholar
    • Export Citation
  • 14. Šesták J . Thermophysical properties of solids: their measurements and theoretical thermal analysis. Amsterdam: Elsevier; 1984 and Teoretičeskij termičeskij analyz. Mir, Moscow; 1987 (in Russian).

    • Search Google Scholar
    • Export Citation
  • 15. Z Chvoj J Šesták A Tříska eds. 1991 Kinetic phase diagrams: nonequilibrium phase transitions Elsevier Amsterdam.

  • 16. J Šesták eds. 1992 Reaction kinetics by thermal analysis. Special issue of Thermochim Acta 203 Elsevier Amsterdam.

  • 17. J Šesták M Sorai eds. 1995 Transition phenomena in condensed matter. Special issue of Thermochim Acta 266 Elsevier Amsterdam.

  • 18. Šesták J . Heat, thermal analysis and society. Nucleus, Hradec Králové; 2004.

  • 19. Šesták, J 2005 Science of heat, thermophysical studies a generalized approach to thermal analysis Elsevier Amsterdam.

  • 20. Šesták, J 2008 Some model classification of geometrical bodies and their development in historical applications A Wittwer E Knut V Pliska G Folker eds. Approaching scientific knowledge Collegieum Helveticum Zurich 8791.

    • Search Google Scholar
    • Export Citation
  • 21. Penrose, R 1994 Shadow of the mind: approach to the missing science of consciousness Oxford University Press Oxford.

  • 22. Penrose, R 2004 The road to reality: a complete guide to the laws of the Universe Vintage London.

  • 23. Šesták, J, Zámečník, J 2007 Can clustering of liquid water be of assistance for better understanding of biological germplasm exposed to cryopreservation. J Therm Anal Calorim 8:411419.

    • Search Google Scholar
    • Export Citation
  • 24. Barrow, JD 1999 The origin of the universe. Orion, London 1994, impossibility limits of science and science of limits Vintage New York.

    • Search Google Scholar
    • Export Citation
  • 25. Šesták, J, Chvoj, Z 2002 Irreversible thermodynamics and true thermal dynamics in view of generalized solid-state reaction kinetics. Thermochim Acta 388:427431 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Jacobs, PWM, Tompkins, FC 1955 Classification and theory of solid reactions WE Garner eds. Chemistry of the solid state Butterworth London 184212.

    • Search Google Scholar
    • Export Citation
  • 27. Young, DA 1966 Decomposition of solids FC Tompkins eds. Solid and surface kinetics Pergamon Oxford 43144.

  • 28. Johnson WA , Mehl RF. Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min Metal Petro Eng. 1939;135: 416; reprinted in Metall Mater Trans A. 2010;41A:2713-75.

    • Search Google Scholar
    • Export Citation
  • 29. Hulbert, HF 1969 Models for solid-state reactions in powdered compacts: a review. J Br Ceram Soc. 6:1120.

  • 30. Brown, ME, Dollimore, D, Galway, AK 1980 Reactions in the solid-state CH Bamford CFH Tipper eds. Comprehensive chemical kinetics 22 Elsevier Amsterdam.

    • Search Google Scholar
    • Export Citation
  • 31. Galwey, AK, Brown, ME 1999 Thermal decomposition of ionic solids Elsevier Amsterdam.

  • 32. Málek, J, Criado, JM, Šesták, J, Militký, J 1989 The boundary conditions for kinetic models. Thermochim Acta 153:429432 .

  • 33. Málek, J, Mitsuhashi, T, Criado, JM 2001 Kinetic analysis of solid-state processes. J Mater Res. 16:18621871 .

  • 34. Šesták, J, Málek, J 1993 Diagnostic limits of phenomenological models of heterogeneous reactions and thermoanalytical kinetics. Solid State Ion 63/65:254259.

    • Search Google Scholar
    • Export Citation
  • 35. Vyazovkin, S, Wight, CA 2000 Kinetic concepts of thermally stimulated reactions in solids: a view from a historical perspective. Int Rev Phys Chem 19:4560 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Mamleev, V, Bourbigot, S, LeBras, M, Duquesne, S, Šesták, J 2000 Modeling of nonisothermal kinetic mechanism in thermogravimetry. Phys Chem Chem Phys 2:47084716 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37. Koga, N, Šesták, J 1992 TA kinetics and physical-geometry of the nonisothermal crystallization. Bull Soc Espaňa Cer Vidro 31:185189.

    • Search Google Scholar
    • Export Citation
  • 38. Koga, N 1997 Physico-geometric kinetics of solid-state reactions as exemplified by thermal dehydration. J Therm Anal 49:4556 .

  • 39. Koga, N, Tanaka, H 2002 A physico-geometric approach to the kinetics of solid-state reactions. Thermochim Acta 388:4161 .

  • 40. Khawam, A, Flanagan, DR 2006 Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B 110:1731517328 .

  • 41. Kimura, T, Koga, N 2011 Thermal dehydration of monohydrocalcite: overall kinetics and physico-geometrical mechanisms. J Phys Chem A 115:1049110501 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42. Koga N , Šesták J, Šimon P. Some fundamental and historical aspects of phenomenological kinetics. In: Šesták J, Šimon P, editors. Thermal analysis of micro-, nano- and non-crystalline materials, Chap. 1. New York: Springer; 2012 (in press). ISBN 978-90-481-3149-5.

    • Search Google Scholar
    • Export Citation
  • 43. Smith, CS 1953 Microstructure and geometry. Trans Am Soc Metals 45:533575.

  • 44. Smith, CS 1964 Some elementary principles of polycrystalline microstructure. Metal Rev. 9:117 .

  • 45. Pfeifer, O 1985 Macromolecules and colloidal aggregates—fractal dimension as concealed symmetry of irregular structures. Chimia 39:120.

    • Search Google Scholar
    • Export Citation
  • 46. Avnir, D, Farin, D, Pfeifer, P 1984 Molecular fractal surfaces. Nature 308:261263 .

  • 47. Avnir, D 1989 Fractal approach to heterogeneous chemistry Wiley New York.

  • 48. Kopelman, R 1988 Fractal reaction kinetics. Science 241:620625 .

  • 49. Schröde, M 1991 Fractals, chaos and power laws Freeman New York.

  • 50. Šesták, J 2002 The role of order and disorder in thermal and material sciences part 1: heat and society. J Mining Metal 38:122 .

  • 51. Šesták, J 2003 The role of order and disorder in thermal and material sciences part 2: scientific world and new insights. J Mining Metal 39:17.

    • Search Google Scholar
    • Export Citation
  • 52. Glicksman, E 1984 Free dendritic growth. Mater Sci Eng 65:4554 .

  • 53. Lipton, J, Glicksman, ME, Kurz, W 1984 Dendritic growth into undercooled alloy melts. Mater Sci Eng 65:5764 .

  • 54. Roduner E , Cronin L. Nanoscopic materials: size-dependent phenomena. Cambridge: RSC-publ; 2006 & 2007. IBSN 978-1-84755-763-6.

  • 55. Zhang, Z, Li, JC, Jiang, Q 2000 Modeling for size-dependent and dimension-dependent melting of nanocrystals. J Phys D 33:26532656 .

  • 56. Guisbiers, G, Buchaillot, L 2009 Universal size/shape-dependent law for characteristic temperatures. Phys Lett A 374:305308 .

  • 57. Barnard, AS 2010 Modelling of nanoparticles: approaches to morphology and evolution—a review. Rep Prog Phys. 73:65026554 .

  • 58. Elliot, RS 1989 Eutectic solidification processing: crystalline and glassy alloys Butterworth London.

  • 59. Alexander, S, Orbach, R 1982 Density of states on fractals—fractons. J Phys Lett 43:L625 .

  • 60. Bonde, A, Havlin, S 1991 Fractals and disordered systems Springer Berlin .

  • 61. Peitgen, HO, Jurgen, H, Saupe, D 1992 Chaos and fractals: new frontiers of science Springer New York.

  • 62. Mandelbrot, BB 2002 Gaussian self-similarity, fractals, globallity and 1/f noise Springer New York.

  • 63. Falcone, K 2003 Fractal geometry Wiley Chichester .

  • 64. Prout, EG, Tompkins, FC 1944 The thermal decomposition of potassium permanganate. Trans Faraday Soc 40:488498 .

  • 65. Ng, WL 1975 Thermal decomposition in the solid state. Aust J Chem 28:11691178 .

  • 66. Šesták, J, Berggren, G 1971 Study of the kinetics of the mechanism of solid-state reactions at increasing temperature. Thermochim Acta. 3:113 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67. Málek, J, Criado, JM 1991 Is the Šesták–Berggren equation a general expression of kinetic models?. Thermochim Acta 175:305309 .

  • 68. Šimon P . Forty years of Šesták-Berggren equation. Thermochim Acta. 2011. doi: .

  • 69. Heal GR . Explanation of the Šestak-Berggren equation. Unpublished communication; 2011.

  • 70. Yerofeev BV . Reaction rate of processes involving solids with different specific surfaces. In: The proceedings: 4th international symposium reactivity of solids. Amsterdam: Elsevier; 1961. p. 27382.

    • Search Google Scholar
    • Export Citation
  • 71. Málek, J 1999 Crystallization kinetics by thermal analysis. J Therm Anal Calorim 56:763769 .

  • 72. Málek, J 2000 Kinetic analysis of crystallization processes in amorphous materials. Thermochim Acta 355:239253 .

  • 73. Šesták, J Kratochvil 1973 Rational approach to thermodynamic processes and constitutive equations in kinetics. J Therm Anal. 5:193201 .

  • 74. Šesták, J 1979 Thermodynamic basis for the theoretical description and correct interpretation of thermoanalytical experiments. Thermochim Acta 28:197227 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75. Holba, P, Šesták, J 1972 Kinetics with regard to the equilibrium of processes studied by non-isothermal techniques. Zeit physik Chem NF. 80:120 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76. Šesták J . Key lecture: integration of nucleation-growth equation when considering non-isothermal regime and shared phase separation. In: Dolimore D, editor, The 2nd ESTAC (Europ. symp. on thermal analysis) in proc. thermal analysis, Heyden, London; 1981. p. 11520.

    • Search Google Scholar
    • Export Citation
  • 77. R Hiller eds. 2000 Application of fractional calculus in physics World Science River Edge.

  • 78. Milledr, KS, Ross, B 1993 Introduction to the fractional calculus and fractional differential equations Wiley New York.

  • 79. Fleschinger, MF, Zaslavsky, GM, Klaufter, J 1993 Strange kinetics. Nature 363:3133 .

  • 80. Galwey, AK, Brown, ME 2002 Application of the Arrhenius equation to solid-state kinetics: can this be justified?. Thermochim Acta 386:9198 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 81. Galwey, AK 2003 Eradicating erroneous Arrhenius arithmetic. Thermochim Acta. 399:129 .

  • 82. Galwey AK . Theory of solid-state thermal decomposition: scientific stagnation or chemical catastrophe? An alternative approach apprised and advocated. Unpublished communication; 2011.

    • Search Google Scholar
    • Export Citation
  • 83. L'vov, BV 2007 Thermal decomposition of solids and melts: a new thermochemical approach to the mechanism, kinetics and methodology Springer Berlin.

    • Search Google Scholar
    • Export Citation
  • 84. Kissinger, HE 1957 Reaction kinetics in differential thermal analysis. Anal Chem 29:17021706 .

  • 85. Šesták, J 1971 On the applicability of π(x)-function to the determination of reaction kinetics under nonisothermal conditions. Thermochim Acta 3:150154 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 86. Henderson, DW 1979 Experimental analysis of nonisothermal transformations involving nucleation and growth. J Therm Anal. 15:325331 .

  • 87. Kemeny, J, Šesták, J 1987 Comparison of crystallization kinetic theories derived by isothermal and nonisothermal methods. Thermochim Acta 110:113119 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 88. Broido, A, Williams, AF 1970 Use of asymptotic analysis of the large activation energy limit to compare various graphical methods of treating TG data. Thermochim Acta 6:245253 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 89. Moynihan, CT 1993 Correlation between the width of the glass-transition region and the temperature dependence of glass viscosity. J Am Ceram Soc. 76:10811088 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 90. Šesták, J 1974 Applicability of DTA to study of crystallization kinetics of glasses. Phys Chem Glass 15:137140.

  • 91. Christian, JW 1975 Theory of transformations in metals and alloys Pergamon Oxford.

  • 92. Málek, J, Šesták, J, Rouquerol, F, Rouquerol, J, Criado, JM, Ortega, A 1992 Possibilities of two non-isothermal procedures (temperature-and/or rate-controlled) for kinetic studies. J Therm Anal. 38:7187 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 93. Criado, JM, Gotor, FJ, Ortega, A, Real, C 1992 New method of CRTA-application to discrimination of the kinetic models of solid-state reactions. Thermochim Acta 199:235238 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 94. Koga, N, Tanak, H, Criado, JM 2000 Kinetic analysis of inorganic solid-state reactions by CRTA. Netsu Sokutei (Jap J Therml Anal) 27:128140.

    • Search Google Scholar
    • Export Citation
  • 95. Koga, N 1994 A review of the emutual dependence of Arrhenius parameters evaluated by the thermoanalytical study of solid-state reactions: the kinetic compensation effect. Thermochim Acta 244:110 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 96. Koga, N 1995 Kinetic analysis of thermoanalytical data by extrapolating to infinite temperature. Thermochim Acta 258:145149 .

  • 97. Šesták, J, Mareš, JJ, Krištofik, J, Hubík, P 2000 True physical meaning of the so called kinetic compensation effect. Glastech Ber Glass Sci Technol 73 C1 104108.

    • Search Google Scholar
    • Export Citation
  • 98. Galwey, AK, Mortimer, M 2006 Compensation effects and compensation defects in kinetic and mechanistic interpretations of heterogeneous chemical reactions. Int J Chem Kinet 38:464473 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 99. Šesták J , Strnad Z. Simulation of DTA crystallization peak on basis of nucleation-growth curves determined by optical microscopy. In: Gotz J, editor, The proceedings: XI inter. congress on glass, DT CVTS, Vol. II, Prague; 1977. p. 24961.

    • Search Google Scholar
    • Export Citation
  • 100. Málek, J, Zmrhalová, Z, Barták, J, Honcová, P 2010 A novel method to study crystallization of glasses. Thermochim Acta 511:6773 .

  • 101. Málek, J, Shánělová J. Crystallization kinetics in amorphous materials studied by means of calorimetry, microscopy and dilatometry. In: Šesták J, Šimon P, editors. Thermal analysis of micro-, nano- and non-crystalline materials, Chap. 14. New York: Springer; 2012 (in press). ISBN 978-90-481-3149-5.

    • Search Google Scholar
    • Export Citation
  • 102. Dubaj T , Cibulková Z, Šimon P. Justification of the use of non-Arrhenian temperature functions, prepared for publication 2012.

  • 103. Šimon, P 2005 Single-step kinetics approximation employing non-Arrhenius temperature functions. J Therm Anal Calorim 79:703 .

  • 104. Šimon, P 2007 The single-step approximation: attributes, strong and weak sides. J Therm Anal Calorim 88:709715 .

  • 105. Serra, R, Nomen, R, Sempere, J 1998 Non-parametric kinetics: a new method for kinetic study. J Therm Anal Calorim. 52:933 .

  • 106. Vyazovkin, S 2006 Model-free kinetics: staying free of multiplying entities without necessity. J Therm Anal Calorim 83:45 .

  • 107. Šesták, J, Holba, P 1976 Theory of thermoanalytical methods based on the indication of enthalpy changes. Silikáty (Prague) 29:8388 (in Czech).

    • Search Google Scholar
    • Export Citation
  • 108. Šesták, J, Holba, P, Lombardi, G 1977 Quantitative evaluation of thermal effects: theoretical basis of DTA/DSC. Annali di Chimica (Roma) 67:7379.

    • Search Google Scholar
    • Export Citation
  • 109. Nevřiva, M, Holba, P, Šesták, J 1976 Utilization of DTA for the determination of transformation heats. Silikaty (Prague) 29:3338 (in Czech).

    • Search Google Scholar
    • Export Citation
  • 110. Holba, P, Nevřiva, M, Šesták, J 1978 Analysis of DTA curve and related calculation of kinetic data using computer technique. Thermochim Acta 23:223231 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 111. Holba P , Šesták J, Sedmidubsky D. Heat transfer and phase transition at DTA experiments. In: Šesták J, Šimon P, editors. Thermal analysis of micro-, nano- and non-crystalline materials, Chap. 4. New York: Springer; 2012 (in press). ISBN 978-90-481-3149-5.

    • Search Google Scholar
    • Export Citation
  • 112. Höhne, GWH, Hemminger, W, Flammersheim, HJ 2003 Differential scanning calorimetry Springer Dordrecht.

  • 113. ME Brown PK Gallagher eds. 2008 Handbook of thermal analysis and calorimetry Elsevier Amsterdam.

  • 114. G Gabbott eds. 2008 Principles and application of thermal analysis Blackwell Oxford.

  • 115. Boerio-Goates, J, Callen, JE 1992 Differential thermal methods BW Rossiter RC Beatzold eds. Determination of thermodynamic properties Wiley New York 621718.

    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 1 1 0
Mar 2021 3 0 0
Apr 2021 3 1 0
May 2021 2 0 0
Jun 2021 0 0 0
Jul 2021 1 0 0
Aug 2021 0 0 0