Authors:
Vratislav Tydlitát Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29, Prague 6, Czech Republic

Search for other papers by Vratislav Tydlitát in
Current site
Google Scholar
PubMed
Close
,
Jan Zákoutský Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29, Prague 6, Czech Republic

Search for other papers by Jan Zákoutský in
Current site
Google Scholar
PubMed
Close
, and
Robert Černý Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29, Prague 6, Czech Republic

Search for other papers by Robert Černý in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Design, construction, calibration, and testing of a new isothermal heat flow calorimeter suitable for investigation of large-volume specimens are presented. The measuring vessel has the volume of 1370 cm3, and the calorimeter allows for the measurement at surrounding air temperatures of 5–60 °C. A practical application of the device is demonstrated at the determination of specific hydration heat of cement paste and concrete with silica-aggregate size of up to 16 mm, having the same water/cement ratio. The differences over the whole measuring time period of about 100 h are lower than 2% which indicates a good potential of the calorimeter for the measurement of total hydration heat of composite materials. A reference measurement of hydration heat of cement paste using common isothermal heat flow calorimeter with the measuring vessel of 1 cm3 shows an agreement within ±7%, which seems acceptable, taking into account the heat transport processes in the far larger specimens. The designed calorimeter may find use in future also in other applications where larger specimens are required, such as the measurement of adsorption heat, solution heat, various reaction heats, and enthalpy of liquid–solid transition in heterogeneous systems with large representative elementary volumes.

  • 1.

    Manya, JJ, Antal, MJ, Kinoshita, CK, Masutani, SM. 2011. Specific heat capacity of pure water at 4.0 MPa between 298.15 and 465.65 K. Ind Eng Chem Res. 50:64706484 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Yamaya, K, Matsuguchi, A, Kagawa, N, Koyama, S. 2011. Isochoric specific heat capacity of trans-1,3,3,3-tetrafluoropropene (HFO-1234ze(E)) and the HFO-1234ze(E) + CO(2) mixture in the liquid phase. J Chem Eng Data. 56:15351539 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Dan, WY, Di, YY, Kong, YX, Wang, Q, Yang, WW, Wang, DQ. 2010. Crystal structure and solid–solid phase transition of the complex (C(11)H(18)NO)(2)CuCl(4)(s). J Therm Anal Calorim. 102:291296 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    da Silva, MAVR, Amaral, LMPF, Ortiz, RV. 2011. Experimental study on the thermochemistry of 3-nitrobenzophenone, 4-nitrobenzophenone and 3,3′-dinitrobenzophenone. J Chem Thermodyn. 43:546551 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Wilken, N, Kamasamudram, K, Currier, NW, Li, JH, Yezerets, A, Olsson, L. 2010. Heat of adsorption for NH(3), NO(2) and NO on Cu-Beta zeolite using microcalorimeter for NH(3) SCR applications. Catal Today. 151:237243 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Barriocanal, L, Taylor, KMG, Buckton, G. 2004. A study of liposome formation using a solution (isoperibol) calorimeter. Int J Pharm. 287:113121 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Posern, K, Kaps, C. 2008. Humidity controlled calorimetric investigation of the hydration of MgSO4 hydrates. J Therm Anal Calorim. 92:905909 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Seifert, HJ, Funke, S. 1998. Solution enthalpies of hydrates LnCl3·xH2O (Ln=Ce–Lu). Thermochim Acta. 320:17 .

  • 9.

    Adrega, T AW van Herwaarden 2011. Chip calorimeter for thermal characterization of bio-chemical solutions. Sens Actuators A. 167:354358 .

  • 10.

    Gerstig, M, Wadsö, L. 2010. A method based on isothermal calorimetry to quantify the influence of moisture on the hydration rate of young cement pastes. Cem Concr Res. 40:867874 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Brandstetr, J, Polcer, J, Kratky, J, Holesinksy, R, Havlica, J. 2001. Possibilities of the use of isoperibolic calorimetry for assessing the hydration behavior of cementitious systems. Cem Concr Res. 31:941947 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Wang, J-C, Yan, P-Y. 2006. Influence of initial casting temperature and dosage of fly ash on hydration heat evolution of concrete under adiabatic condition. J Therm Anal Calorim. 85:755760 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Mostafa, NY, Brown, PW. 2005. Heat of hydration of high reactive pozzolans in blended cements: isothermal conduction calorimetry. Thermochim Acta. 435:162167 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Rahhal, V, Talero, R. 2005. Early hydration of Portland cement with crystalline mineral additions. Cem Concr Res. 35:12851291 .

  • 15.

    Langan, BW, Weng, K, Ward, MA. 2002. Effect of silica fume and fly ash on heat of hydration of Portland cement. Cem Concr Res. 32:10451051 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Jezo, L, Palou, M, Kozankova, J, Ifka, T. 2010. Determination of activation effect of Ca(OH)2 upon the hydration of BFS and related heat by isothermal calorimeter. J Therm Anal Calorim. 101:585593 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Roszczynialski, W, Nocun-Wczelik, W. 2004. Studies of cementitious systems with new generation by-products from fluidised bed combustion. J Therm Anal Calorim. 77:151158 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Černý, R, Maděra, J, Poděbradská, J, Toman, J, Drchalová, J, Klečka, T, Jurek, K, Rovnaníková, P. 2000. The effect of compressive stress on thermal and hygric properties of Portland cement mortar in wide temperature and moisture ranges. Cem Concr Res. 30:12671276 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Vejmelková, E, Konvalinka, P, Černý, R. 2008. Effect of high temperatures on mechanical and thermal properties of carbon-fiber reinforced cement composite. Cem Wapno Beton. 13 75 6674.

    • Search Google Scholar
    • Export Citation
  • 20.

    Zuda, L, Rovnaník, P, Bayer, P, Černý, R. 2011. Thermal properties of alkali-activated aluminosilicate composite with lightweight aggregates at elevated temperatures. Fire Mater. 35:231244 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Tydlitát, V, Tesárek, P, Černý, R. 2008. Effects of the type of calorimeter and the use of plasticizers and hydrophobizers on the measured hydration heat development of FGD gypsum. J Therm Anal Calorim. 91:791796 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Tydlitát V , Medved I, Černý R. Determination of a partial phase composition in calcined gypsum by calorimetric analysis of hydration kinetics. J Therm Anal Calorim. 2011. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Garcıa-Cuello, V, Moreno-Pirajan, JC, Giraldo-Gutierrez, L, Sapag, K, Zgrablich, G. 2009. Adsorption micro calorimeter. Design and electric calibration. J Therm Anal Calorim. 97:711715 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Hansen, CW, Hansen, LD, Nicholson, AD, Chilton, MC, Thomas, N, Clark, J, Hansen, JC. 2011. Correction for instrument time constant and baseline in determination of reaction kinetics. Int J Chem Kinet. 43:5361 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2023 1 0 0
Jul 2023 2 0 0
Aug 2023 3 0 0
Sep 2023 7 0 0
Oct 2023 7 0 0
Nov 2023 4 4 0
Dec 2023 4 0 0