Authors:
Purvi A. Bhatt Condensed Matter Physics Laboratory, Applied Physics Department, Faculty of Technology & Engineering, The M. S. University of Baroda, Vadodara 390 001, India

Search for other papers by Purvi A. Bhatt in
Current site
Google Scholar
PubMed
Close
,
Arun Pratap Condensed Matter Physics Laboratory, Applied Physics Department, Faculty of Technology & Engineering, The M. S. University of Baroda, Vadodara 390 001, India

Search for other papers by Arun Pratap in
Current site
Google Scholar
PubMed
Close
, and
Prafulla K. Jha Department of Physics, Bhavnagar University, Bhavnagar 364002, India

Search for other papers by Prafulla K. Jha in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The size and shape effects on melting, glass transition, and Kauzmann temperatures of SnO2 nanoparticles using Lindemann's criterion have been studied. The melting temperature of SnO2 nanoparticles decreases as the size of the particle decreases. As the particle size increases, melting temperature increases and approaches to the melting temperature 1,903 K of bulk irrespective of the shape. The glass transition and Kauzmann temperatures are analyzed through the size effect on the melting temperature. The glass transition and Kauzmann temperatures decrease with the decrease in size of SnO2 nanoparticles.

  • 1.

    Baskoutas, S, Terzis, AF. 2006. Size-dependent band gap of colloidal quantum dots. J Appl Phys. 99:013708/1013708/4 .

  • 2.

    Baskoutas, S, Terzis, AF. 2008. Size dependent exciton energy of various technologically important colloidal quantum dots. Mater Sci Eng B. 147:280283 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Salavati-Niasari, M, Mir, N, Davar, F. 2010. Synthesis, characterization and optical properties of tin oxide nanoclusters prepared from a novel precursor via thermal decomposition route. Inorg Chim Acta. 363:17191726 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Dabin, Y, Debao, W, Weichao, Y, Yitai, Q. 2006. Synthesis of ITO nanowires and nanorods with corundum structure by a co-precipitation-anneal method. Mater Lett. 58:8487.

    • Search Google Scholar
    • Export Citation
  • 5.

    Krishnakumar, T, Jayaprakash, R, Parthibavarman, M, Phani, AR, Singh, VN, Mehta, BR. 2009. Microwave-assisted synthesis and investigation of SnO2 nanoparticles. Mater Lett. 63:896898 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Fraigi, LB, Lamas, DG, Walsoe de Reca, NE. 2001. Comparison between two combustion routes for the synthesis of nanocrystalline SnO2 powders. Mater Lett. 47:262266 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Korosi, L, Papp, S, Meynen, V, Cool, P, Vansant, EF, Dekany, I. 2005. Preparation and characterization of SnO2 nanoparticles of enhanced thermal stability: the effect of phosphoric acid treatment on SnO2·nH2O. Colloids Surf A. 268:147154 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Zhaohui, H, Neng, G, Fanqing, L, Wanqun, Z, Huaquiao, Z, Yitai, Q. 2001. Solvothermal preparation and morphological evolution of stannous oxide powders. Mater Lett. 48:99103 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Sakai, G, Baik, NS, Miura, N, Yamazoe, N. 2001. Gas sensing properties of tin dioxide thin films fabricated from hydrothermally treated nanoparticles: Dependence of CO and H2 response on film thickness. Sense Actuators B. 77:116121 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Luo, HX, Ying-Ji, Z, Shi-Wei, W. 2004. Sonochemical and microwave-assisted synthesis of linked single-crystalline ZnO rods. Mater Chem Phys. 88:421426 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Cukrov, LM, Mc Cormick, PG, Galatsis, K, Wlodarski, W. 2001. Gas sensing properties of nanosized tin oxide synthesised by mechanochemical processing. Sens Actuators B. 77:491495 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Li, F, Chen, L, Chen, Z, Xu, J, Zhu, J, Xin, X. 2002. Two-step solid-state synthesis of tin dioxide and its gas-sensing property. Mater Chem Phys. 73:335338 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Takagi, MJ. 1954. Electron-diffraction study of liquid–solid transition of thin metal films. J Phys Soc Japan. 9:35963 .

  • 14.

    Mishra, S, Jha, PK, Pratap, A. 2012. Study of size-dependent glass transition and Kauzmann temperature of titanium dioxide nanoparticles. J Therm Anal Calorim. 107:6568 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Jiang, Q, Yang, CC. 2008. Size effect on the phase stability of nanostructures. Curr Nanosci. 4:179200 .

  • 16.

    Shi, FG. 1994. Size dependent thermal vibrations and melting in nanocrystals. J Mater Res. 9:130712 .

  • 17.

    Zhang, Z, Li, JC, Jiang, Q. 2000. Modeling for size-dependent and dimension-dependent melting of nanocrystals. J Phys D. 33:26532656 .

  • 18.

    Dhurandhar, H, Lad, K, Pratap, A, Dey, GK. 2008. Gibbs free energy difference in bulk metallic glass forming alloys. Defect Diffus Forum. 279:9196 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Ao, ZM, Zheng, WT, Jiang, Q. 2007. Size effects on the Kauzmann temperature and related thermodynamic parameters of Ag nanoparticles. Nanotechnology. 18:255706 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Mishra, S, Gupta, SK, Jha, PK, Pratap, A. 2010. Study of dimension dependent diffusion coefficient of titanium dioxide nanoparticles. Mater Chem Phys. 123:791794 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Guisbiers, G, Buchaillot, L. 2008. Size and shape effects on creep and diffusion at the nanoscale. Nanotechnology. 19:435701435707 .

  • 22.

    Gupta, SK, Talati, M, Jha, PK. 2008. Shape and size dependent melting point temperature of nanoparticles. Mater Sci Forum. 570:132137 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Hoang, VV. 2007. Pressure-induced structural transition in amorphous TiO2 nanoparticles and in the bulk via molecular dynamics simulation. J Phys D. 40:74547461 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Yang, CC, Li, S. 2008. Size-dependent Raman red shifts of semiconductor nanocrystals. J Phys Chem B. 112:1419314197 .

  • 25.

    Cava, S, Sequinel, T, Tebcherani, SM, Michel, MD, Lazaro, SR, Pianaro, SA. 2009. Microstructure of ceramic particles infiltrated into float glass surfaces by high gas pressure impregnation. J Alloys Compd. 484:877881 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Mar 2024 28 0 0
Apr 2024 40 1 0
May 2024 9 0 0
Jun 2024 31 0 0
Jul 2024 36 0 0
Aug 2024 26 1 1
Sep 2024 15 0 0