Authors:
R. K. Singh Department of Physics, Patna Women's College, Patna 800 001, India

Search for other papers by R. K. Singh in
Current site
Google Scholar
PubMed
Close
,
A. Narayan P.G. Department of Physics, Patna University, Patna 800 005, India

Search for other papers by A. Narayan in
Current site
Google Scholar
PubMed
Close
,
K. Prasad Department of Physics, Central University of Jharkhand, Ranchi 835205, India

Search for other papers by K. Prasad in
Current site
Google Scholar
PubMed
Close
,
R. S. Yadav Nanotechnology Application Centre, University of Allahabad, Allahabad 211002, India

Search for other papers by R. S. Yadav in
Current site
Google Scholar
PubMed
Close
,
A. C. Pandey Nanotechnology Application Centre, University of Allahabad, Allahabad 211002, India

Search for other papers by A. C. Pandey in
Current site
Google Scholar
PubMed
Close
,
A. K. Singh Thermal Analysis Lab, University Department of Chemistry, Magadh University, Bodh-Gaya 824234, India

Search for other papers by A. K. Singh in
Current site
Google Scholar
PubMed
Close
,
L. Verma Thermal Analysis Lab, University Department of Chemistry, Magadh University, Bodh-Gaya 824234, India

Search for other papers by L. Verma in
Current site
Google Scholar
PubMed
Close
, and
R. K. Verma Thermal Analysis Lab, University Department of Chemistry, Magadh University, Bodh-Gaya 824234, India

Search for other papers by R. K. Verma in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Magnetic nanoparticles of cobalt ferrite have been synthesized by citrate precursor method. TG-DSC studies have been made to get the idea of the optimum temperature of annealing that could lead to the formation of nanoparticles. Annealing the citrate precursor was done at 450, 650, and 973 °C. The X-ray diffraction (XRD) studies and the scanning electron microscopy (SEM) have been used for characterization. The data from vibrating sample magnetometer and photoluminescence spectrometer (PL) have been analyzed for exploring their applications. Using the Scherrer formula, the crystallite size was found to be 25, 32, and 43 nm, respectively, using the three temperatures. The particle size increased with annealing temperature. Rietveld refinements on the X-ray (XRD) data were done on the cobalt ferrite nanoparticles (monoclinic cells) obtained on annealing at 650 °C, selecting the space group P2/M. The values of coercivity (1574.4 G) and retentivity (18.705 emu g−1) were found out in the sample annealed at 650 °C while magnetization (39.032 emu g−1) was also found in the sample annealed at 973 °C. The photoluminescence (PL) property of these samples were studied using 225, 330, and 350 nm excitation wavelength radiation source. The PL intensity was found to be increasing with the particle size.

  • 1.

    Zi, Z, Sun, Y, Zhu, X, Yang, Z, Dai, J, Song, W. 2009. Synthesis and magnetic properties of CoFe2O4 ferrite nanoparticles. J Magn Magn Mater. 321:12511255 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Grigorova, M, Blythe, HJ, Blaskov, V, Rusanov, V, Petkov, V, Masheva, V, Nihtianova, D, Martinez, LM, Munoz, JS, Mikhov, M. 1998. Magnetic properties and Mössbauer spectra of nanosized CoFe2O4 powders. J Magn Magn Mater. 183:163172 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Shenker, H. 1957. Magnetic anisotropy of cobalt ferrite (Co1.01Fe2.00O3.62) and nickel cobalt ferrite (Ni0.72Fe0.20Co0.08Fe2O4). Phys Rev. 107:12461249 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    West AR . Basic solid state chemistry. Delhi: Wiley; 1998. p. 356.

  • 5.

    Salunkhe, AB, Khot, VM, Phadatare, MR, Pawar, SH. 2012. Combustion synthesis of cobalt ferrite nanoparticles—influence of fuel to oxidizer ratio. J Alloy Compd. 514:9196 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Maaz, K, Mumtaz, A, Hasnain, SK, Ceylan, A. 2007. Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J Magn Magn Mater. 308:289295 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Naidek, KP, Bianconi, F, Rizuti da Rocha, TC, Zanchet, D, Bonacin, JA, Novak, MA, Vaz, MGF, Winnischofer, H. 2011. Structure and morphology of spinel MFe2O4 (M = Fe, Co., Ni) nanoparticles chemically synthesized from heterometallic complexes. J Colloid Interface Sci. 358:3946 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Cedeno-Mattei, Y, Perales-Perez, O. 2009. Synthesis of high-coercivity cobalt ferrite nanocrystals. Microelectron J. 40:673676 .

  • 9.

    Fannin, PC, Marin, CN, Malaescu, I, Stefu, N, Vlazan, P, Novaconi, S, Sfirloaga, P, Popescu, S, Couper, C. 2011. Microwave absorbent properties of nanosized cobalt ferrite powders prepared by coprecipitation and subjected to different temperature treatments. Mater Des. 32:16001604 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Zhang, Y, Yang, Z, Yin, D, Liu, Y, Fei, C, Xiong, R, Shi, J, Yan, G. 2010. Composition and magnetic properties of cobalt ferrite nano-particles prepared by the co-precipitation method. J Magn Magn Mater. 322:34703475 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Sajjia, M, Oubaha, M, Prescott, T, Olabi, AG. 2010. Development of cobalt ferrite powder preparation employing the sol–gel technique and its structural characterization. J Alloy Compd. 506:400406 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Verma, RK, Hill, JO, Niinisto, L, Mojumdar, SC, Kumar, DD. 2012. A curriculum framework for education in thermal analysis. J Mater Educ. 34:133150.

    • Search Google Scholar
    • Export Citation
  • 13.

    Verma, RK, Verma, L, Chandra, M. 2003. Thermoanalytical studies on the non-isothermal dehydration and decomposition of dl-lactates of a series of transition metals. Indian J Chem. 42A:29822987.

    • Search Google Scholar
    • Export Citation
  • 14.

    Bhattacharjee, NC, Kumar, M, Kumar, S, Verma, RK. 1998. Kinetic and mechanistic studies on non-isothermal decomposition of potassium dioxalatocuprate(II) dihydrate. J Indian Chem Soc. 75 5 317318.

    • Search Google Scholar
    • Export Citation
  • 15.

    Verma, RK, Verma, L, Chandra, M, Bhushan, A. 2005. Non-isothermal dehydration and decomposition of dl-lactates of transition metals and alkaline earth metals: a comparative study. J Therm Anal Calorim. 80:351354 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Kumar, M, Verma, RK, Verma, L, Bhattacharjee, NC, Kumar, S, Verma, BP. 1996. Thermal decomposition of potassium trioxalato chromate(III) trihydrate: a kinetic and mechanistic study. Asian J Chem. 8 3 543546.

    • Search Google Scholar
    • Export Citation
  • 17.

    Agrawal, HL, Mishra, A, Ambasta, RK, Verma, L, Verma, RK, Verma, BP. 1994. Kinetic parameters of thermolysis of complexes of rhodium(III), palladium(II) and platinum(II) with substituted morpholines from their non-isothermal thermogravimetric data. Asian J Chem. 6:130134.

    • Search Google Scholar
    • Export Citation
  • 18.

    Verma, BP, Verma, RK, Chandra, M, Pandey, S, Mallick, AK, Verma, L. 1994. A study of non-isothermal decomposition of calcium dl-lactate pentahydrate. Asian J Chem. 6:606612.

    • Search Google Scholar
    • Export Citation
  • 19.

    Verma, RK, Verma, L, Ranjan, M, Verma, BP, Mojumdar, SC. 2008. Thermal analysis of 2-oxocyclopentanedithiocarboxylato complexes of iron(III), copper(II) and zinc(II) containing pyridine or morpholine as the second ligand. J Therm Anal Calorim. 94:2731 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Verma, RK, Verma, L, Bhushan, A, Verma, BP. 2007. Thermal decomposition of complexes of cadmium(II) and mercury(II) with triphenylphosphanes. J Therm Anal Calorim. 90:725729 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Brown ME , Gallagher PK. Introduction to recent advances, techniques and applications of thermal analysis and Calorimetry. In Brown ME, Gallagher PK, Editors. Hand book of thermal analysis and calorimetry. Elsevier: New York; 2008. pp. 112.

    • Search Google Scholar
    • Export Citation
  • 22.

    Verma, RK, Verma, L, Chandra, M, Verma, BP. 1998. Kinetic parameters of thermal dehydration and decomposition from thermoanalytical curves of zinc dl-lactate. J Indian Chem Soc. 75:162164.

    • Search Google Scholar
    • Export Citation
  • 23.

    Singh, RK, Yadav, A, Narayan, A, Singh, AK, Verma, L, Verma, RK. 2012. Thermal, structural and magnetic studies on chromite spinel, synthesized by citrate precursor method and annealed at temperature 450 °C and 650 °C. J Therm Anal Calorim. 107:197204 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Singh, RK, Yadav, A, Narayan, A, Chandra, M, Verma, RK. 2012. Thermal, XRD and magnetization studies on ZnAl2O4 and NiAl2O4 spinels, synthesized by citrate precursor method and annealed at temperature 450 °C and 650 °C. J Therm Anal Calorim. 107:205210 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Goldstein AN (ed.), Handbook of nanophase materials. New York: Marcel Dekker; 1997. p. 1.

  • 26.

    Panda, RN et al. 2003. Magnetic properties of nano-crystalline Gd or Pr substituted CoFe2O4 synthesized by the citrate precursor technique. J Magn Magn Mater. 257:7986 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Sajjia, M, Benyounis, KY, Olabi, AG. 2012. The simulation and optimization of heat treatment of cobalt ferrite nanoparticles prepared by sol–gel technique. Powder Technol. 222:143151 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Cullity BD . Elements of X-ray diffraction. New York: Wiley; 1978. p. 101.

  • 29.

    Roisnel J , Rodrıguez-Carvajal J, WinPLOTR; Laboratoire Leon Brillouin (CEA-CNRS) Centre d'Etudes de Saclay: Gif sur Yvette Cedex, France, 2000.

    • Search Google Scholar
    • Export Citation
  • 30.

    Rodriguez-Carvajal J . FullProf 2000: A Rietveld Refinement and Pattern Matching Analysis Program, (Version: April 2008), Laboratoire Léon Brillouin (CEA-CNRS), France.

    • Search Google Scholar
    • Export Citation
  • 31.

    Williamson, GK, Hall, WH. 1953. X-ray line broadening from filed aluminium and wolfram. Acta Metal. 1:22 .

  • 32.

    Bhowmik, RN. 2009 Lattice expansion and magnetic order in spinel oxide Proceedings of National Conference on Nanoscience & Nanotechnology Kolkata.

    • Search Google Scholar
    • Export Citation
  • 33.

    Chinnasamy, CN, Jeyadevan, B, Perales-Perez, O, Shinoda, K, Tohji, K, Kasuya, A. 2002. Growth dominant co-precipitation process to achieve high coercivity at room temperature in CoFe2O4 nanoparticles. IEEE Trans Magn. 38 5 26402642 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Bahadur, D. 1992. Current trends in applications of magnetic ceramic materials. Bull Mater Sci. 15 5 431439 .

  • 35.

    Bandyopadhay AK . Nanomaterials. New. Delhi: New age international; 2007. pp. 254267.

  • 36.

    Xi, YY, Cheung, TLY, Dickon, HLN. 2008. Synthesis of ternary ZnxCd1−xS nanowires by thermal evaporation and the study of their photoluminescence. Mater Lett. 62:128132 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Nov 2024 88 0 0
Dec 2024 62 0 0
Jan 2025 99 0 0
Feb 2025 111 0 0
Mar 2025 96 0 0
Apr 2025 29 0 0
May 2025 5 0 0