Authors:
Q. Hu Nano-materials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, Zhejiang, 325035, China
Department of Pharmacology, School of Basic Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China

Search for other papers by Q. Hu in
Current site
Google Scholar
PubMed
Close
,
H. L. Jin Nano-materials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, Zhejiang, 325035, China

Search for other papers by H. L. Jin in
Current site
Google Scholar
PubMed
Close
,
X. A. Chen Nano-materials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, Zhejiang, 325035, China

Search for other papers by X. A. Chen in
Current site
Google Scholar
PubMed
Close
, and
S. Wang Nano-materials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, Zhejiang, 325035, China

Search for other papers by S. Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Thermal decomposition of N,N′-diphenylguanidine (DPG) was investigated by simultaneous TG/DSC-FTIR techniques under nonisothermal conditions. Online FTIR measurements illustrate that aniline is a major product of DPG decomposition. The observation that the activation energy depends on the extent of conversion indicates that the DPG decomposition kinetics features multiple processes. The initial elimination of aniline from DPG involves two pathways because of the isomerization of DPG. Mass spectrometry and thin film chromatography suggest that there are two major intermediate products with the major one of C21N3H17. The most probable kinetic model deduced through multivariate nonlinear regression method agrees well with the experimental data with a correlation coefficient of 0.9998. The temperature-independent function of conversion f(α), activation energy E and the pre-exponential factor A of DPG decomposition was also established through model-fitting method in this research.

  • 1.

    Sadequl, AM, Ishiaku, US, Poh, BT. 1999. Cure index and activation energy of ENR 25 compared with SMR L in various vulcanization systems. Eur Polym J. 35:711719 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Kanne, DB, Dick, RA, Tomizawa, M, Casida, JE. 2005. Neonicotinoid nitroguanidine insecticide metabolites: synthesis and nicotinic receptor potency of guanidines, aminoguanidines, and their derivatives. Chem Res Toxicol. 18:14791484 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Otón, F, Tárraga, A, Molina, P. 2006. A bis-guanidine-based multisignaling sensor molecule that displays redox-ratiometric behavior or fluorescence enhancement in the presence of anions and cations. Org Lett. 8:21072110 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Russell, VA, Evans, CC, Li, WJ, Ward, MD. 1997. Nanoporous molecular sandwiches: bonded networks with adjustable porosity. Science. 276:575579 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Schmidtchen, FP, Berger, M. 1997. Artificial organic host molecules for anions. Chem Rev. 97:16091646 .

  • 6.

    Kita, T, Georgieva, A, HashimotoY, Nakata T, Nagasawa, K. 2002. C2-symmetric chiral pentacyclic guanidine: a phase-transfer catalyst for the asymmetric alkylation of tert-butyl glycinate Schiff base. Angew Chem Int Ed. 41:28322834 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Allingham, MT, Howard-Jones, A, Murphy, PJ, Thomas, DA, Caulkett, PWR. 2003. Synthesis and applications of C2-symmetric guanidine bases. Tetrahedron Lett. 44:86778680 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Terada, M, Ube, H, Yaguchi, Y. 2006. Axially chiral guanidine as enantioselective base catalyst for 1,4-Addition reaction of 1,3-dicarbonyl compounds with conjugated nitroalkenes. J Am Chem Soc. 128:14541455 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Shen, J, Nguyen, TT, Goh, YP, Ye, W, Fu, X, Xu, J, Tan, CH. 2006. Chiral bicyclic guanidine-catalyzed enantioselective reactions of anthrones. J Am Chem Soc. 128:1369213693 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Olney, JW, Labruyere, J, Price, MT. 1989. Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs. Science. 244:13601362 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Largent, BL, Wikstrom, H, Gundlach, AL, Snyder, SH. 1987. Structural determinants of sigma receptor affinity. Mol Pharmacol. 32:772784.

    • Search Google Scholar
    • Export Citation
  • 12.

    Guillén Schlippe, YV, Hedstrom, L. 2005. Guanidine derivatives rescue the Arg418Ala mutation of Tritrichomonas foetus IMP dehydrogenase. Biochemistry. 44:1669516700 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Chang, LC, Whittaker, NF, Bewley, CA. 2003. Crambescidin 826 and dehydrocrambine A: new polycyclic guanidine alkaloids from the marine sponge Monanchora sp. that inhibit HIV-1 fusion. J Nat Prod. 66:14901494 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Pfister, T, Wimmer, E. 1999. Characterization of the nucleoside triphosphatase activity of poliovirus protein 2C reveals a mechanism by which guanidine inhibits poliovirus replication. J Biol Chem. 274:69927001 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Dubois, SG, Messina, J, Maris, JM, Huberty, J, Glidden, DV, Veatch, J, Charron, M, Hawkins, R, Matthay, KK. 2004. Hematologic toxicity of high-dose iodine-131-metaiodobenzylguanidine therapy for advanced neuroblastoma. J Clin Oncol. 22:24522460 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Agnew, R, Wilson, SW, Stratton-Crawley, R. 1995. Evaluation of flotation performance using variance spectrum analysis. Miner Eng. 8:5162 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Bruze, M, Kestrup, L. 1994. Occupational allergic contact dermatitis from diphenylguanidine in a gas mask. Contact Dermatitis. 31:125126 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Bempong, MA, Hall, AV. 1983. Reproductive toxicology of 1,3-diphenylguanidine: analysis of induced sperm abnormalities in mice and hamsters and reproductive consequences in mice. J Toxicol Environ Health. 11:869878 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Bempong, MA, Mantley, R. 1985. Body fluid analysis of 1,3-diphenylguanidine for mutagenicity as detected by Salmonella strains. J Environ Pathol Toxicol Oncol. 6:293301.

    • Search Google Scholar
    • Export Citation
  • 20.

    Kotler, JM, Hinman, NW, Richardson, CD, Scott, JR. 2010. Thermal decomposition behavior of potassium and sodium jarosite synthesized in the presence of methylamine and alanine. J Therm Anal Calorim. 102:2329 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Bertol, CD, Cruz, AP, Stulzer, HK, Murakami, FS, Silva, M. 2010. Thermal decomposition kinetics and compatibility studies of primaquine under isothermal and non-isothermal conditions. J Therm Anal Calorim. 102:187192 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Bayram, H, Önal, M, Hamza, Y, Sarıkaya, Y. 2010. Thermal analysis of a white calcium bentonite. J Therm Anal Calorim. 101:873879 .

  • 23.

    Cabrales, L, Abidi, N. 2010. On the thermal degradation of cellulose in cotton fibers. J Therm Anal Calorim. 102:485491 .

  • 24.

    Burnham, AK, Dinh, LN. 2007. A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application predictions. J Therm Anal Calorim. 89:479490 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Tanatani, A, Yamaguchi, K, Azumaya, I, Fukutomi, R, Shudo, K, Kagechika, H. 1998. N-methylated diphenylguanidines: conformations, propeller-type molecular chirality, and construction of water-soluble oligomers with multi-layered aromatic structures. J Am Chem Soc. 120:64336442 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Friedman, HL. 1963. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C. 6:183195.

    • Search Google Scholar
    • Export Citation
  • 27.

    Flynn, JH, Wall, LA. 1966. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part B. 4:323328 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Ozawa, T. 1965. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 38:18811886 .

  • 29.

    Kissinger, HE. 1957. Reaction kinetics in differential thermal analysis. Anal Chem. 29:17021706 .

  • 30.

    Vyazovkin, S. 2001. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 22:178183 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Vyazovkin, S. 1996. A unified approach to kinetic processing of nonisothermal data. Int J Chem Kinet. 28:95101 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Opfermann, J. 2000. Kinetic analysis using multivariate non-linear regression. J Therm Anal Calorim. 60:641658 .

  • 33.

    Zhang, KL, Hong, JH, Cao, GH, Zhan, D, Tao, YT, Cong, CJ. 2005. The kinetics of thermal dehydration of copper(II) acetate monohy-drate in air. Thermochim Acta. 437:145149 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Durbin, J, Watson, GS. 1950. Testing for serial correlation in least squares regression I. Biometrika. 37:409428.

  • 35.

    Brown ME , Dollimore D, Galwey AK. Reactions in the solid state. In: Bamford CH, Tipper CFH, editors. Comprehensive chemical kinetics. Elsevier, Amsterdam; 1980. p. 340.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Mar 2024 14 1 0
Apr 2024 104 0 0
May 2024 9 0 0
Jun 2024 9 0 0
Jul 2024 60 0 0
Aug 2024 30 0 0
Sep 2024 26 0 0