Copper hydrogenphosphate monohydrate, CuHPO4·H2O, was synthesized for the first time through simple and rapid method using the mixing of copper carbonate and phosphoric acid in acetone medium at ambient temperature. The obtained CuHPO4·H2O decomposed in three stages via dehydration and deprotonated hydrogenphosphate reactions, revealed by TG/DTG and DSC techniques. The kinetic triplet parameters (Ea, A, and n) and thermodynamic functions (ΔH∗, ΔG∗, and ΔS∗) for the first two decomposed steps were calculated from DSC data. All the obtained functions indicate that the deprotonated HPO42− reaction for the second step occurs at a higher energy pathway than the dehydration reaction for the first step. The calculated wavenumbers based on DSC peaks were comparable with FTIR results, which support the breaking bonds of OH (H2O) and P-OH (HPO42−) according to decomposed mechanisms. All the calculated results are consistent and in good agreement with CuHPO4·H2O's thermal transformation mechanisms.
Averbuch-Pouchat, MT, Durif, A. 1996 Topics in phosphate chemistry 1 World Scientific Singapore .
Xu, J, Zhang, J, Qian, J. 2010. Hydrothermal synthesis of potassium copper phosphate hydrate and ludjibaite microcrystals. J Alloys Compd. 494:319–322 .
Onoda, H, Okumoto, K-I, Nakahira, A, Tanaka, I. 2009. Mechanochemical effects on the synthesis of copper orthophosphate and cyclo-tetraphosphate bulks by the hydrothermal hot pressing method. Materials. 2:1–9 .
Galkova, TN, Pacewska, B, Samuskevich, VV, Pysiak, J, Shulga, NV. 2000. Thermal transformations of CuNH4PO4·H2O. J Therm Anal Calorim. 60:1019–1032 .
Frost, RL, Kloprogge, T, Williams, PA, Martens, W, Johnson, TE, Leverett, P. 2002. Vibrational spectroscopy of the basic copper phosphate minerals: pseudomalachite, ludjibaite and reichenbachite. Spectrochim Acta A. 58:2861–2868 .
Lucheva, B, Tsonev, TS, Petkov, R. 2005. Method for obtaining of copper-phosphorus alloys. J Univ Chem Technol Metall. 40:235–238.
Onoda, H, Okumoto, K-I, Tanaka, I. 2008. Mechanochemical reforming of powder and acidic properties of copper cyclo-tetraphosphates. Mater Chem Phys. 107:339–343 .
Bamberger, CE, Specht, ED, Anovitz, LM. 1997. Crystalline copper phosphates: synthesis and thermal stability. J Am Ceram Soc. 80 12 3133–3138 .
Robertson, BE, Calvo, C. 1967. The crystal structure and phase transformation of α-Cu2P2O7. Acta Crystallogr. 22:665–672 .
Effenberger, H. 1990. Structural refinement of low-temperature copper(II) pyrophosphate. Acta Crystallogr. C46:691–692.
Navrotsky SN , Le A, Pralong V. Energetics of copper diphosphates—Cu2P2O7 and Cu3(P2O6OH)2. J Solid State Sci. 2008; 10: 761–7.
Viter, VN, Nagornyi, PG. 2006. Synthesis and characterization of (Cu1–xZnx)3(PO4)2·H2O (0 < x ≤ 0.19) solid solutions. Inorg Mater. 42 4 406–409 .
Bamberger, CE, Specht, ED, Anovitz, LM. 1998. Compounds and solid solutions of cobalt, copper phosphates. J Am Ceram Soc. 81 11 2799–2804 .
Kopilevich, VA, Zhilyak, ID, Voitenko, LV. 2005. Synthesis and thermal transformations of hydrated ammonium copper(II) zinc diphosphate. Russ J Appl Chem. 78 12 1917–1920 .
Prokopchuk, NN, Kopilevich, VA, Voitenko, LV. 2008. Preparation of double nickel(II) cobalt(II) phosphates with controlled cationic composition. Russ J Appl Chem. 81 3 386–391 .
Bhatgadde, LG, Mahapatra, S. 1988. Preparation and optimization of pyrophosphate bath for copper electroplating of microwave components. Def Sci J. 38 2 119–123.
EC da Silva Filho OG da Silva MG da Fonseca Arakaki, LNH, Airoldi, C. 2007. Synthesis and thermal characterization of copper and calcium mixed phosphates. J Therm Anal Calorim. 87 3 775–778 .
Podgornova, L, Kuznetsov, P, Yu, I, Gavrilova, SV. 2003. On the zinc and copper dissolution in phosphate solutions. Prot Met. 39 3 217–221 .
Ciopec, M, Muntean, C, Negrea, A, Lupa, L, Negrea, P, Barvinschi, P. 2009. Synthesis and thermal behavior of double copper and potassium pyrophosphate. Thermochim Acta. 488:10–16 .
Brandová, D, Trojan, M, Arnold, M, Paulik, F, Paulik, J. 1988. Mechanism of dehydration and condensation of CuHPO4·H2O. J Therm Anal Calorim. 34:1449–1454 .
Cullity, BD. 1977 Elements of X-ray diffraction 2 Addison-Wesley Massachusetts.
Kissinger, HE. 1957. Reaction kinetics in differential thermal analysis. Anal Chem. 29:1702–1706 .
Anilkumar, GM, Sung, YM. 2003. Phase formation kinetics of nanoparticle-seeded strontium bismuth tantalate powder. J Mater Sci. 38:1391–1396 .
Zhao, MS, Song, XP. 2007. Synthesizing kinetics and characteristics for spinel LiMn2O4 with the precursor using as lithium-ion battery cathode material. J Power Sources. 164:822–828 .
Brown, ME, Maciejewski, M, Vyazovkin, S, Nomen, R, Sempere, J, Burnham, A, Opfermann, J, Strey, R, Anderson, HL, Kemmler, A, Keuleers, R, Janssens, J, Desseyn, HO, Li, C-R, Tang, TB, Roduit, B, Malek, J, Mitsuhashi, T. 2000. Computational aspects of kinetic analysis Part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta. 355:125–143 .
Vyazovkin, S, Burnham, AK, Criado, JM, Perez-Maqueda, LA, Popescu, C, Sbirrazzuoli, N. 2011. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 520:1–19 .
Zhang, LM, Chen, D, Wu, J. 2007. Leucite crystallization kinetics with kalsilite as a transition phase. Mater Lett. 61:2978–2981 .
Boonchom, B. 2008. Kinetics and thermodynamic properties of the thermal decomposition of manganese dihydrogenphosphate dehydrate. J Chem Eng Data. 53:1533–1538 .
Cordes, HM. 1968. Preexponential factors for solid-state thermal decomposition. J Phys Chem. 72:2185–2189 .
Young, D. 1966 Decomposition of solids Pergamon Press Oxford.
Turmanova, SCh, Genieva, SD, Dimitrova, AS, Vlaev, LT. 2008. Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites. Express Polym Lett. 2:133–146 .
Herzberg, G. 1939 Molekülspektren und Molekülstruktur. I. Zweiatomige Moleküle Steinkopff Dresden.
Colthup NB , Daly LH, Wiberley SE. Introduction to infrared and Raman spectroscopy. New York: Academic Press; 1964.
Vlase, T, Vlase, G, Doca, M, Doca, N. 2003. Specificity of decomposition of solids in non-isothermal conditions. J Therm Anal Calorim. 72:597–604 .
Bertol, C, Cruz, A, Stulzer, H, Murakami, F, Silva, M. 2010. Thermal decomposition kinetics and compatibility studies of primaquine under isothermal and non-isothermal conditions. J Therm Anal Calorim. 102:187–192 .
Navarro, M, Lagarrigue, M, De, J, Carbonio, R, Gómez, M. 2010. A new method of synthesis of BiFeO3 prepared by thermal decomposition of Bi[Fe(CN)6]·4H2O. J Therm Anal Calorim. 102:655–660 .
Boonchom, B, Danvirutai, C. 2009. Kinetics and thermodynamics of thermal decomposition of synthetic AlPO4·2H2O. J Therm Anal Calorim. 98:771–777 .
Mansurova, A, Gulyaeva, R, Chumarev, V, Mar'evich, V. 2010. Thermochemical properties of MnNb2O6. J Therm Anal Calorim. 101:45–47 .