Authors:
Rattanai Baitahe Electroceramic Research Laboratory, College of Nanotechnology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
ThEP Center, CHE, 328 Si Ayutthaya Rd, Bangkok 10400, Thailand

Search for other papers by Rattanai Baitahe in
Current site
Google Scholar
PubMed
Close
,
Naratip Vittayakorn Electroceramic Research Laboratory, College of Nanotechnology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
ThEP Center, CHE, 328 Si Ayutthaya Rd, Bangkok 10400, Thailand
Advanced Materials Science Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand

Search for other papers by Naratip Vittayakorn in
Current site
Google Scholar
PubMed
Close
, and
Banjong Boonchom King Mongkut's Institute of Technology Ladkrabang, Chumphon Campus, 17/1 M. 6 Pha Thiew District, Chumphon 86160, Thailand

Search for other papers by Banjong Boonchom in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Copper hydrogenphosphate monohydrate, CuHPO4·H2O, was synthesized for the first time through simple and rapid method using the mixing of copper carbonate and phosphoric acid in acetone medium at ambient temperature. The obtained CuHPO4·H2O decomposed in three stages via dehydration and deprotonated hydrogenphosphate reactions, revealed by TG/DTG and DSC techniques. The kinetic triplet parameters (Ea, A, and n) and thermodynamic functions (ΔH∗, ΔG∗, and ΔS∗) for the first two decomposed steps were calculated from DSC data. All the obtained functions indicate that the deprotonated HPO42− reaction for the second step occurs at a higher energy pathway than the dehydration reaction for the first step. The calculated wavenumbers based on DSC peaks were comparable with FTIR results, which support the breaking bonds of OH (H2O) and P-OH (HPO42−) according to decomposed mechanisms. All the calculated results are consistent and in good agreement with CuHPO4·H2O's thermal transformation mechanisms.

  • 1.

    Averbuch-Pouchat, MT, Durif, A. 1996 Topics in phosphate chemistry 1 World Scientific Singapore .

  • 2.

    Xu, J, Zhang, J, Qian, J. 2010. Hydrothermal synthesis of potassium copper phosphate hydrate and ludjibaite microcrystals. J Alloys Compd. 494:319322 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Onoda, H, Okumoto, K-I, Nakahira, A, Tanaka, I. 2009. Mechanochemical effects on the synthesis of copper orthophosphate and cyclo-tetraphosphate bulks by the hydrothermal hot pressing method. Materials. 2:19 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Galkova, TN, Pacewska, B, Samuskevich, VV, Pysiak, J, Shulga, NV. 2000. Thermal transformations of CuNH4PO4·H2O. J Therm Anal Calorim. 60:10191032 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Frost, RL, Kloprogge, T, Williams, PA, Martens, W, Johnson, TE, Leverett, P. 2002. Vibrational spectroscopy of the basic copper phosphate minerals: pseudomalachite, ludjibaite and reichenbachite. Spectrochim Acta A. 58:28612868 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Lucheva, B, Tsonev, TS, Petkov, R. 2005. Method for obtaining of copper-phosphorus alloys. J Univ Chem Technol Metall. 40:235238.

  • 7.

    Onoda, H, Okumoto, K-I, Tanaka, I. 2008. Mechanochemical reforming of powder and acidic properties of copper cyclo-tetraphosphates. Mater Chem Phys. 107:339343 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Bamberger, CE, Specht, ED, Anovitz, LM. 1997. Crystalline copper phosphates: synthesis and thermal stability. J Am Ceram Soc. 80 12 31333138 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Robertson, BE, Calvo, C. 1967. The crystal structure and phase transformation of α-Cu2P2O7. Acta Crystallogr. 22:665672 .

  • 10.

    Effenberger, H. 1990. Structural refinement of low-temperature copper(II) pyrophosphate. Acta Crystallogr. C46:691692.

  • 11.

    Navrotsky SN , Le A, Pralong V. Energetics of copper diphosphates—Cu2P2O7 and Cu3(P2O6OH)2. J Solid State Sci. 2008; 10: 7617.

  • 12.

    Viter, VN, Nagornyi, PG. 2006. Synthesis and characterization of (Cu1–xZnx)3(PO4)2·H2O (0 < x ≤ 0.19) solid solutions. Inorg Mater. 42 4 406409 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Bamberger, CE, Specht, ED, Anovitz, LM. 1998. Compounds and solid solutions of cobalt, copper phosphates. J Am Ceram Soc. 81 11 27992804 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Kopilevich, VA, Zhilyak, ID, Voitenko, LV. 2005. Synthesis and thermal transformations of hydrated ammonium copper(II) zinc diphosphate. Russ J Appl Chem. 78 12 19171920 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Prokopchuk, NN, Kopilevich, VA, Voitenko, LV. 2008. Preparation of double nickel(II) cobalt(II) phosphates with controlled cationic composition. Russ J Appl Chem. 81 3 386391 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Bhatgadde, LG, Mahapatra, S. 1988. Preparation and optimization of pyrophosphate bath for copper electroplating of microwave components. Def Sci J. 38 2 119123.

    • Search Google Scholar
    • Export Citation
  • 17.

    EC da Silva Filho OG da Silva MG da Fonseca Arakaki, LNH, Airoldi, C. 2007. Synthesis and thermal characterization of copper and calcium mixed phosphates. J Therm Anal Calorim. 87 3 775778 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Podgornova, L, Kuznetsov, P, Yu, I, Gavrilova, SV. 2003. On the zinc and copper dissolution in phosphate solutions. Prot Met. 39 3 217221 .

  • 19.

    Ciopec, M, Muntean, C, Negrea, A, Lupa, L, Negrea, P, Barvinschi, P. 2009. Synthesis and thermal behavior of double copper and potassium pyrophosphate. Thermochim Acta. 488:1016 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Brandová, D, Trojan, M, Arnold, M, Paulik, F, Paulik, J. 1988. Mechanism of dehydration and condensation of CuHPO4·H2O. J Therm Anal Calorim. 34:14491454 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Cullity, BD. 1977 Elements of X-ray diffraction 2 Addison-Wesley Massachusetts.

  • 22.

    Kissinger, HE. 1957. Reaction kinetics in differential thermal analysis. Anal Chem. 29:17021706 .

  • 23.

    Anilkumar, GM, Sung, YM. 2003. Phase formation kinetics of nanoparticle-seeded strontium bismuth tantalate powder. J Mater Sci. 38:13911396 .

  • 24.

    Zhao, MS, Song, XP. 2007. Synthesizing kinetics and characteristics for spinel LiMn2O4 with the precursor using as lithium-ion battery cathode material. J Power Sources. 164:822828 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Brown, ME, Maciejewski, M, Vyazovkin, S, Nomen, R, Sempere, J, Burnham, A, Opfermann, J, Strey, R, Anderson, HL, Kemmler, A, Keuleers, R, Janssens, J, Desseyn, HO, Li, C-R, Tang, TB, Roduit, B, Malek, J, Mitsuhashi, T. 2000. Computational aspects of kinetic analysis Part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta. 355:125143 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Vyazovkin, S, Burnham, AK, Criado, JM, Perez-Maqueda, LA, Popescu, C, Sbirrazzuoli, N. 2011. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 520:119 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Zhang, LM, Chen, D, Wu, J. 2007. Leucite crystallization kinetics with kalsilite as a transition phase. Mater Lett. 61:29782981 .

  • 28.

    Boonchom, B. 2008. Kinetics and thermodynamic properties of the thermal decomposition of manganese dihydrogenphosphate dehydrate. J Chem Eng Data. 53:15331538 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Cordes, HM. 1968. Preexponential factors for solid-state thermal decomposition. J Phys Chem. 72:21852189 .

  • 30.

    Young, D. 1966 Decomposition of solids Pergamon Press Oxford.

  • 31.

    Turmanova, SCh, Genieva, SD, Dimitrova, AS, Vlaev, LT. 2008. Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites. Express Polym Lett. 2:133146 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Herzberg, G. 1939 Molekülspektren und Molekülstruktur. I. Zweiatomige Moleküle Steinkopff Dresden.

  • 33.

    Colthup NB , Daly LH, Wiberley SE. Introduction to infrared and Raman spectroscopy. New York: Academic Press; 1964.

  • 34.

    Vlase, T, Vlase, G, Doca, M, Doca, N. 2003. Specificity of decomposition of solids in non-isothermal conditions. J Therm Anal Calorim. 72:597604 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Bertol, C, Cruz, A, Stulzer, H, Murakami, F, Silva, M. 2010. Thermal decomposition kinetics and compatibility studies of primaquine under isothermal and non-isothermal conditions. J Therm Anal Calorim. 102:187192 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Navarro, M, Lagarrigue, M, De, J, Carbonio, R, Gómez, M. 2010. A new method of synthesis of BiFeO3 prepared by thermal decomposition of Bi[Fe(CN)6]·4H2O. J Therm Anal Calorim. 102:655660 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Boonchom, B, Danvirutai, C. 2009. Kinetics and thermodynamics of thermal decomposition of synthetic AlPO4·2H2O. J Therm Anal Calorim. 98:771777 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Mansurova, A, Gulyaeva, R, Chumarev, V, Mar'evich, V. 2010. Thermochemical properties of MnNb2O6. J Therm Anal Calorim. 101:4547 .

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2024 3 0 0
May 2024 10 0 0
Jun 2024 9 0 0
Jul 2024 25 0 0
Aug 2024 20 0 0
Sep 2024 57 0 0
Oct 2024 53 0 0