View More View Less
  • 1 Laboratory of Inorganic Materials, Tallinn University of Technology, Ehitajate tee 5, 19086, Tallinn, Estonia
  • | 2 Riga Biomaterials, Innovation and Development Centre, Riga Technical University, Pulku 3-3, Riga 1007, Latvia, kgross@rtu.lvkarlis.gross@eng.monash.edu.auliene.pluduma@rtu.lv
  • | 3 Department of Materials Engineering, Monash University, Melbourne, VIC, 3800, Australia
Restricted access

Abstract

High temperature processing is essential for the preparation of apatites for biomaterials, lighting, waste removal and other applications. This requires a good understanding of the thermal stability and transitions upon heating. The most widely used is hydroxyapatite (HAp), but increasing interest is being directed to fluorapatite (FAp) and chlorapatite (ClAp). The structural modifications for substitutions are discussed to understand the temperature processing range for the different apatites. This is based on a review of the literature from the past few decades, together with recent research results. Apatite thermal stability is mainly determined by the stoichiometry (Ca/P ratio and structural substitutions) and the gas composition during heating. Thermal stability is lowered the most by a substitution of calcium and phosphate, leading to loss in phase stability at temperatures less than 900 °C. The anions in the hexagonal axis, OH in HAp, F in FAp and Cl in ClAp are the last to leave upon heating, and prevention of the loss of these groups ensures high temperature stability. The information discussed here will assist in understanding the changes of apatites during heating in calcination, sintering, hydrothermal processing, plasma spraying, flame pyrolysis, and other high-temperature processes.

  • 1.

    Pan Y , Fleet ME. Compositions of the apatite group minerals: substitution mechanisms and controlling factors. In: Kohn MJ, Rakovan J, Hughes JM, editors. Phosphates: geochemical, geobiological and material importance. 2002. p. 1350.

    • Search Google Scholar
    • Export Citation
  • 2.

    Pasero, M, Kampf, AR, Ferraris, C, Pekov, IV, Rakovan, J, White, TJ. 2010. Nomenclature of the apatite supergroup minerals. Eur J Mineral. 22:163179 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Elliott, J. 1994 Structure and chemistry of the apatites and other calcium orthophosphates Elsevier Amsterdam.

  • 4.

    Kanazawa, T. 1989 Inorganic phosphates materialls Kodansha Ltd. and Elsevier Tokyo.

  • 5.

    Gross, KA, Berndt, CC. 2002. Biomedical application of apatites. Phosphates: geochemical, geobiological and material importance. Rev Mineral Geochem. 48:631672 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Veiderma, M. 2000. Studies on thermochemistry and thermal processing of apatite. Proc Estonian Acad Sci Chem. 49:518.

  • 7.

    Elliott, JC. 2002. Calcium phosphate biominerals. Phosphates: geochemical, geobiological and material importance. Rev Mineral Geochem. 48:427454 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    LeGeros, R. 1991 Calcium phosphates in oral biology and medicine Karger Publishing New York.

  • 9.

    Piccoli, P, Candela, P. 2002. Apatite in igneous systems MJ Kohn J Rakovan JM Hughes eds. Phosphates: geochemical, geobiological and material importance Mineralogical Society of America Washington 255292.

    • Search Google Scholar
    • Export Citation
  • 10.

    Cisse L , Mrabet T. World phosphate production: overview and prospects. Phosphorus Research Bulletin: Casablanca; 2004. p. 2125.

  • 11.

    Jasinski SM . Phosphate rock. In: Mineral Commodity Summaries. Washington, DC: U.S. Geological Survey; 2011. p. 1189.

  • 12.

    Marshall, HL, Reynolds, DS, Jacob, KD, Tremearne, TH. 1937. Phosphate fertilizers by calcination process. Ind Eng Chem. 29:12941298 .

  • 13.

    Volfkovich SI , Veiderma M. The progress of hydrothermal processing of phosphate rock. In: Technical-economic conference. ISMA, Fertliser Techn Orlando: Orlando; 1978. p. 4962.

    • Search Google Scholar
    • Export Citation
  • 14.

    Veiderma, M, Knubovets, R, Tõnsuaadu, K. 1996. Fluorhydroxyapatites of Northern Europe and their thermal transformations. Phosphorus Sulfur Silicon Relat Elem. 109:4346 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Veiderma, M, Pyldme, M, Tynsuaadu, K. 1988. Thermische entfluorierung of apatit. Chein Techn. 40:169172.

  • 16.

    Sneddon, IR, Orueetxebarria, M, Hodson, ME, Schofield, PF, Valsami-Jones, E. 2006. Use of bone meal amendments to immobilise Pb, Zn and Cd in soil: a leaching column study. Environ Pollut. 144:816825 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Lazic, S, Zec, S, Miljevic, N, Milonjic, S. 2001. The effect of temperature on the properties of hydroxyapatite precipitated from calcium hydroxide and phosphoric acid. Thermochim Acta. 374:1322 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Dorozhkin, SV. 2009. Calcium orthophosphate-based biocomposites and hybrid biomaterials. J Mater Sci. 44:23432387 .

  • 19.

    Gross, KA, Berndt, CC, Stephens, P, Dinnebier, R. 1998. Oxyapatite in hydroxyapatite coatings. J Mater Sci. 33:39853991 .

  • 20.

    Zyman, Z, Ivanov, I, Rochmistrov, D, Glushko, V, Tkachenko, N, Kijko, S. 2001. Sintering peculiarities for hydroxyapatite with different degrees of crystallinity. J Biomedical Mater Res. 54:256263 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Ruys, AJ, Wei, M, Sorrell, CC, Dickson, MR, Brandwood, A, Milthorpe, BK. 1995. Sintering effects on the strength of hydroxyapatite. Biomater. 16:409415 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Haines, P. 1995 Thermal methods of analysis. Principles, applications and problems Blackie Academic & Professional London.

  • 23.

    Venkateswarlu, K, Chandra Bose, A, Rameshbabu, N. 2010. X-ray peak broadening studies of nanocrystalline hydroxyapatite by Williamson-Hall analysis. Physica B. 405:42564261 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Wallaeys, R. 1952. Contribution a l'etude des apatits phosphocalciques. Ann Chim. 7:808848.

  • 25.

    Tanaka, H, Chikazawa, M, Kandori, K, Ishikawa, T. 2000. Influence of thermal treatment on the structure of calcium hydroxyapatite. Phys Chem Chem Phys. 2:26472650 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Dzyuba, ED, Sokolov, TM, Valyukevich, PL. 1982. Thermal stability of calcium phosphates. Izvestiya Akad Nauk SSSR Neorg Mater. 18:107110 (In russian).

    • Search Google Scholar
    • Export Citation
  • 27.

    Prener, JS. 1967. The growth and crystallographic properties of calcium fluor- and chlorapatite crystals. J Electrochem Soc. 114:7783 .

  • 28.

    Surendran, R, Chinnakali, K. 2008. Preparation and characterisation of fluorapatite whiskers. Cryst Res Technol. 43:490495 .

  • 29.

    Demnanti I , Grossin D, Combes C, Rey C, Parco M, Fagoaga I, Barykin G, Braceras I. Hydroxyapatite and chlorapatite. Thin coatings obtained by a novel plasma mini-torch process. In: 5th forum on new materials. Nantes; 2010, p. FL-1L-14.

    • Search Google Scholar
    • Export Citation
  • 30.

    Kannan, S, Rebelo, A, Lemos, AF, Barba, A, Ferreira, JMF. 2007. Synthesis and mechanical behaviour of chlorapatite and chlorapatite/β-TCP composites. J Eur Ceram Soc. 27:22872294 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    García-Tuñón, E, Franco, J, Dacuña, B, Zaragoza, G, Guitián, F. 2010. Chlorapatite conversion to hydroxyapatite under high temperature hydrothermal conditions. Mater Sci Forum. 636–637:914 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Liao, C-J, Lin, F-H, Chen, K-S, Sun, J-S. 1999. Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere. Biomater. 20:18071813 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Park, HC, Baek, DJ, Park, YM, Yoon, SY, Stevens, R. 2004. Thermal stability of hydroxyapatite whiskers derived from the hydrolysis of α-TCP. J Mater Sci. 39:25312534 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Wang, T, Dorner-Reisel, A, Müller, E. 2004. Thermogravimetric and thermokinetic investigation of the dehydroxylation of a hydroxyapatite powder. J Eur Ceram Soc. 24:693698 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Ivanova, TI, Frank-Kamenetskaya, OV, Kol'tsov, AB, Ugolkov, VL. 2001. Crystal structure of calcium-deficient carbonated hydroxyapatite. Thermal decomposition. J Solid State Chem. 160:340349 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Corno, M, Busco, C, Bolis, V, Tosoni, S, Ugliengo, P. 2009. Water adsorption on the stoichiometric (001) and (010) surfaces of hydroxyapatite: a periodic B3LYP study. Langmuir. 25:21882198 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Sakhno, Y, Bertinetti, L, Iafisco, M, Tampieri, A, Roveri, N, Martra, G. 2010. Surface hydration and cationic sites of nanohydroxyapatites with amorphous or crystalline surfaces: a comparative study. J Phys Chem C. 114:1664016648 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Wang, PE, Chaki, TK. 1993. Sintering behaviour and mechanical properties of hydroxyapatite and dicalcium phosphate. J Mater Sci. 4:150158 .

  • 39.

    Chen, Y, Miao, X. 2005. Thermal and chemical stability of fluorohydroxyapatite ceramics with different fluorine contents. Biomater. 26:12051210 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    White, AA, Kinloch, IA, Windle, AH, Best, SM. 2010. Optimization of the sintering atmosphere for high-density hydroxyapatite -carbon nanotube composites. J R Soc Interface. 7:S529S539 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Bredig, MA, Frank, HH, Füldner, H. 1933. Beiträge zur kenntnis der kalk-phosphorsäure-verbindungen II. Z Elektrochem. 39:959969.

  • 42.

    Trombe, JC, Montel, G. 1978. Some features of the incorporation of oxygen in different oxidation states in the apatitic lattice–I on the existence of calcium and strontium oxyapatites. J Inorg Nucl Chem. 40:1521 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Cihlář, J, Buchal, A, Trunec, M. 1999. Kinetics of thermal decomposition of hydroxyapatite bioceramics. J Mater Sci. 34:61216131 .

  • 44.

    Fowler, BO. 1974. Infrared studies of apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution. Inorg Chem. 13:194207 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Monma, H, Kanazawa, T. 1976. Effect of hydroxylation on the thermal reactivities of fluorapatite and chlorapatite. Bull Chem Soc Jpn. 49:14211422 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Locardi, B, Pazzaglia, UE, Gabbi, C, Profilo, B. 1993. Thermal behaviour of hydroxyapatite intended for medical applications. Biomater. 14:437441 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Gross, KA, Gross, V, Berndt, CC. 1998. Thermal analysis of amorphous phases in hydroxyapatite coatings. J Am Ceram Soc. 81:106112 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Chen, J, Tong, W, Yang, C, Feng, J, Zhang, X. 1997. Efect of atmosphere on phase transformation in plasma-sprayed hydroxyapatite coatings during heat treatment. J Biomedical Mater Res. 34:1520 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Combes, C, Rey, C. 2010. Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. Acta Biomater. 6:33623378 .

  • 50.

    McPherson, R, Gane, N, Bastow, TJ. 1995. Structural characterization of plasma-sprayed hydroxylapatite coatings. J Mater Sci. 6:327334 .

  • 51.

    Yang, C-W, Lui, T-S. 2009. Kinetics of hydrothermal crystallization under saturated steam pressure and the self-healing effect by nanocrystallite for hydroxyapatite coatings. Acta Biomater. 5:27282737 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Lin, F-H, Chun-Jen, L, Ko-Shao, C, Jui-Sheng, S. 2000. Thermal reconstruction behavior of the quenched hydroxyapatite powder during reheating in air. Mater Sci Eng. 13:97104 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Shpak AP , Karbovskii VL, Trachevskii VV. Apatites, Kiev: Akademperiodika; 2002. (In Russian).

  • 54.

    Park, E, Condrate, RA, Lee, D, Kociba, K, Gallagher, PK. 2002. Characterization of hydroxyapatite: before and after plasma spraying. J Mater Sci. 13:211218 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    DeGroot, K, Klein, C, Wolke, J J De Blieck-Hogervorst 1990. Calcium phosphate and hydroxylapatite ceramics. Plasma-sprayed coatings of calcium phosphate T Yamamuro LL Hench J Wilson eds. CRC handbook of bioactive ceramics CRC Press Boca Raton 133142.

    • Search Google Scholar
    • Export Citation
  • 56.

    Wilson, R, Elliott, J, Dowker, S, Rodriguez-Lorenzo, L. 2005. Rietveld refinements and spectroscopic studies of the structure of Ca-deficient apatite. Biomaterials. 26:13171327 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Raynaud, S, Champion, E, Bernache-Assollant, D, Thomas, P. 2002. Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomaterials. 23:10651072 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Gibson, IR, Bonfield, W. 2002. Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite. J Biomed Mater Res. 59:697708 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Astala, R, Stott, MJ. 2005. First principles investigation of mineral component of bone: CO3 substitutions in hydroxyapatite. Chem Mater. 17:41254133 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Li, Y, Kong, F, Weng, W. 2009. Preparation and characterization of novel biphasic calcium phosphate powders (α-TCP/HA) derived from carbonated amorphous calcium phosphates. J Biomedical Mater Res Part B. 89B:508517 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Kim, KY, Shaver, KJ. 1973. Calcination properties of precipitated basic calcium phosphates. J KIChE. 11:336348.

  • 62.

    Pyldme, M, Buzágh-Gere, É, Pyldme, J, Veiderma, M. 1976. Thermal analysis of the interaction of phosphorite with condensed phosphates of calcium. J Therm Anal Calorim. 10:195204 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    Nilen, R, Richter, P. 2008. The thermal stability of hydroxyapatite in biphasic calcium phosphate ceramics. J Mater Sci. 19:16931702 .

  • 64.

    DeLeeuw, NH. 2010. Computer simulations of structures and properties of the biomaterial hydroxyapatite. J Mater Chem. 20:53765389 .

  • 65.

    Zyman, Z, Rokhmistrov, D, Glushko, V, Ivanov, I. 2009. Thermal impurity reactions and structural changes in slightly carbonated hydroxyapatite. J Mater Sci. 20:13891399 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    Bonel, G. 1972. Contribution à l’étude de la carbonation des apatites -1- Synthèse et étude des propriétés physico-chimiques des apatites carbonatées du type A. Ann Chim Fr. 7:6588.

    • Search Google Scholar
    • Export Citation
  • 67.

    Lafon, JP, Champion, E, Bernache-Assollant, D. 2008. Processing of AB-type carbonated hydroxyapatite Ca10−x(PO4)6−x(CO3)x(OH)2−x−2y(CO3)y ceramics with controlled composition. J Eur Ceram Soc. 28:139147 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68.

    Tõnsuaadu, K, Peld, M, Leskelä, T, Mannonen, R, Niinistö, L, Veiderma, M. 1995. A thermoanalytical study of synthetic carbonate-containing apatites. Thermochim Acta. 256:5565 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69.

    Krajewski, A, Mazzocchi, M, Buldini, PL, Ravaglioli, A, Tinti, A, Taddei, P, Fagnano, C. 2005. Synthesis of carbonated hydroxyapatites: efficiency of the substitution and critical evaluation of analytical methods. J Mol Struct. 744–747:221228 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 70.

    Tadic, D, Epple, M. 2004. A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomater. 25:987994 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71.

    Lafon, J, Champion, E, Bernache-Assollant, D, Gibert, R, Danna, A. 2003. Termal decomposition of carbonated calcium phosphate apatites. J Therm Anal Calorim. 72:11271134 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72.

    Tõnsuaadu, K, Peld, M, Bender, V. 2003. Thermal analysis of apatite structure. J Therm Anal Calorim. 72:363371 .

  • 73.

    Zhu, Q, Wu, J. 2007. Effect of initial carbonate content and heat treatments on preparation and properties of carbonated hydroxyapatite. J Chinese Ceramic Soc. 35:866870.

    • Search Google Scholar
    • Export Citation
  • 74.

    Zhu, QX, Wu, JQ. 2007. Investigation on heat treatment of carbonated hydroxyapatite. J Funct Mater. 38:20552058.

  • 75.

    Barralet, J, Knowles, JC, Best, S, Bonfield, W. 2002. Thermal decomposition of synthesised carbonate hydroxyapatite. J Mater Sci. 13:529533 .

  • 76.

    Rau, J, Cesaro, SN, Ferro, D, Barinov, S, Fadeeva, I. 2004. FTIR study of carbonate loss from carbonated apatites in the wide temperature range. J Biomed Mater Res Part B. 71B:441447 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 77.

    Vignoles, M, Bonel, G, Bacquet, G. 1982. Physicochemical study on phosphocalcium carbonated apatites similar to francolite. Bull Mineral. 105:307311.

    • Search Google Scholar
    • Export Citation
  • 78.

    Perdikatsis, B. 1991. X-ray powder diffraction study of francolite by the Rietveld method. Mater Sci Forum. 79–82:809814 .

  • 79.

    McClellan G , Van Kauwenbergh S. Mineralogy of sedimentary apatites. In: Phosphorite research and development. London: Geological Society; 1990. p. 2331.

    • Search Google Scholar
    • Export Citation
  • 80.

    Jemal, M, Khattech, I. 1989. Simultaneous thermogravimetry and gas chromatography during decomposition of carbonate apatites. Thermochim Acta. 152:6576 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 81.

    Callens, FJ, Verbeeck, RMH, Naessens, DE, Matthys, PFA, Boesman, ER. 1991. The effect of carbonate content and drying temperature on the ESR-spectrum near g = 2 of carbonated calciumapatites synthesized from aqueous media. Calcif Tissue Int. 48:249259 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 82.

    Bianco, A, Cacciotti, I, Lombardi, M, Montanaro, L, Bemporad, E, Sebastiani, M. 2010. F-substituted hydroxyapatite nanopowders: thermal stability, sintering behaviour and mechanical properties. Ceram Int. 36:313322 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 83.

    Tõnsuaadu, K, Peld, M, Quarton, M, Bender, V, Veiderma, M. 2002. Studies on SO4 2- ion incorporation into apatite structure. Phosphorus, Sulfur, Silicon Relat Elem. 177:18731876 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 84.

    Khattech, I, Jemal, M. 1987. Décomposition thermique de fluorapatites carbonatées de type b “inverses”. Thermochim Acta. 118:267275 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85.

    Slósarczyk, A, Paszkiewicz, Z, Paluszkiewicz, C. 2005. FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods. J Mol Struct. 744–747:657661 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 86.

    Kannan, S, Ventura, JMG, Lemos, AF, Barba, A, Ferreira, JMF. 2008. Effect of sodium addition on the preparation of hydroxyapatites and biphasic ceramics. Ceram Int. 34:713 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 87.

    Leskiv, M, Lagoa, ALC, Urch, H, Schwiertz, J ME Da Piedade Minas Epple, M. 2009. Energetics of calcium phosphate nanoparticle formation by the reaction of Ca(NO3)2 with (NH4)2HPO4. J Phys Chem C. 113:54785484 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 88.

    Yasukawa, A, Kandori, K, Ishikawa, T. 2003. TPD-TG-MS study of carbonate calcium hydroxyapatite particles. Calcif Tissue Int. 72:243250 .

  • 89.

    Hidouri, M, Bouzouita, K, Kooli, F, Khattech, I. 2003. Thermal behaviour of magnesium-containing fluorapatite. Mater Chem Phys. 80:496505 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 90.

    Ren, F, Leng, Y, Xin, R, Ge, X. 2010. Synthesis, characterization and ab initio simulation of magnesium-substituted hydroxyapatite. Acta Biomater. 6:27872796 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 91.

    Marchi, J, Dantas, ACS, Greil, P, Bressiani, JC, Bressiani, AHA, Müller, FA. 2007. Influence of Mg-substitution on the physicochemical properties of calcium phosphate powders. Mater Res Bull. 42:10401050 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 92.

    Cacciotti, I, Bianco, A, Lombardi, M, Montanaro, L. 2009. Mg-substituted hydroxyapatite nanopowders: synthesis, thermal stability and sintering behaviour. J Eur Ceram Soc. 29:29692978 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 93.

    Medveckż, L, Stulajterovį, R, Parilįk, L, Trpcevskį, J, Durisin, J, Barinov, SM. 2006. Influence of manganese on stability and particle growth of hydroxyapatite in simulated body fluid. Coll Surfaces A. 281:221229 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 94.

    Paluszkiewicz, C, Slósarczyk, A, Pijocha, D, Sitarz, M, Bucko, M, Zima, A, Chróscicka, A, Lewandowska-Szumiel, M. 2010. Synthesis, structural properties and thermal stability of Mn-doped hydroxyapatite. J Mol Struct. 976:301309 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 95.

    Li, MO, Xiao, X, Liu, R, Chen, C, Huang, L. 2008. Structural characterization of zinc-substituted hydroxyapatite prepared by hydrothermal method. J Mater Sci. 19:797803 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 96.

    Costa, AM, Soares, GA, Calixto, R, Rossi, AM. 2004. Preparation and properties of zinc containing biphasic calcium phosphate bioceramics. Key Eng Mater. 254–256:119122 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 97.

    Loher, S, Stark, WJ, Maciejewski, M, Baiker, A, Pratsinis, SE, Reichardt, D, Maspero, F, Krumeich, F, Günther, D. 2004. Fluoro-apatite and calcium phosphate nanoparticles by flame synthesis. Chem Mater. 17:3642 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 98.

    Riad, M, Mikhail, S. 2010. Zinc incorporated hydroxyapatite as catalysts for oxidative desulphurization process. Glob J Res in Eng. 10:8591.

    • Search Google Scholar
    • Export Citation
  • 99.

    Guerra-López, J, Pomés, R, Védova, COD, Viña, R, Punte, G. 2001. Influence of nickel on hydroxyapatite crystallization. J Raman Spectrosc. 32:255261 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 100.

    Bigi A , Gazzano M, Ripamonti A, Foresti E, Roveri N. Thermal stability of cadmium-calcium hydroxyapatite solid solutions. J Chem Soc Dalton Trans. 1986; 2414.

    • Search Google Scholar
    • Export Citation
  • 101.

    Nounah, A, Lacout, JL. 1993. Thermal behavior of cadmium-containing apatites. J Solid State Chem. 107:444451 .

  • 102.

    Silva, GWC, Hemmers, O, Czerwinski, KR, Lindle, DW. 2008. Investigation of nanostructure and thermal behavior of zinc-substituted fluorapatite. Inorg Chem. 47:77577767 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 103.

    Pasteris, JD, Wopenkaa, B, Freemana, J, Rogersb, K, Valsami-Jonesc, E J van der Houwenc Silvad, M. 2004. Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials. Biomaterials. 25:229238 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 104.

    Loong, CK, Rey, C, Kuhn, LT, Combes, C, Wu, Y, Chen, SH, Glimcher, MJ. 2000. Evidence of hydroxyl-ion deficiency in bone apatites: an inelastic neutron-scattering study. Bone. 26:599602 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 105.

    Peters, F, Schwarz, K, Epple, M. 2000. The structure of bone studied with synchrotron X-ray diffraction, X-ray absorption spectroscopy and thermal analysis. Thermochim Acta. 361:131138 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 106.

    Shi, J, Klocke, A, Zhang, M, Bismayer, U. 2003. Thermal behavior of dental enamel and geologic apatite: An infrared spectroscopic study. Am Mineral. 88:18661871.

    • Search Google Scholar
    • Export Citation
  • 107.

    Shi, J, Klocke, A, Zhang, M, Bismayer, U. 2005. Thermally-induced structural modification of dental enamel apatite: decomposition and transformation of carbonate groups. Eur J Mineral. 17:769775 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 108.

    Etok, S, Valsami-Jones, E, Wess, T, Hiller, J, Maxwell, C, Rogers, K, Manning, D, White, M, Lopez-Capel, E, Collins, M, Buckley, M, Penkman, K, Woodgate, S. 2007. Structural and chemical changes of thermally treated bone apatite. J Mater Sci. 42:98079816 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 109.

    Rabelo, JS, Ana, PA, Benetti, C, Valerio, MEG, Zezell, DM. 2010. Changes in dental enamel oven heated or irradiated with Er, Cr:YSGG laser. Analysis by FTIR. Laser Phys. 20:871875 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 110.

    Barralet J , Best SM, Bonfield W. Effect of sintering parameters on the density and microstructure of carbonate hydroxyapatite. J Mater Sci. 2000; 1924.

    • Search Google Scholar
    • Export Citation
  • 111.

    Onishi, A, Thomas, P, Stuart, B, Guerbois, J, Forbes, S. 2008. TG-MS analysis of the thermal decomposition of pig bone for forensic applications. J Therm Anal Calorim. 92:8790 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 112.

    Grossin, D, Rollin-Martinet, S, Estournčs, C, Rossignol, F, Champion, E, Combes, C, Rey, C, Geoffroy, C, Drouet, C. 2010. Biomimetic apatite sintered at very low temperature by spark plasma sintering: Physico-chemistry and microstructure aspects. Acta Biomater. 6:577585 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2021 12 2 0
Feb 2021 8 1 0
Mar 2021 17 1 0
Apr 2021 11 0 0
May 2021 13 0 0
Jun 2021 8 1 3
Jul 2021 0 0 0