Authors:
Yujiao Xie State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China

Search for other papers by Yujiao Xie in
Current site
Google Scholar
PubMed
Close
,
Chang Liu State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China

Search for other papers by Chang Liu in
Current site
Google Scholar
PubMed
Close
,
Hanbing He State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China

Search for other papers by Hanbing He in
Current site
Google Scholar
PubMed
Close
, and
Xiaohua Lu State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China

Search for other papers by Xiaohua Lu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Hydrogen titanate nanotubes were prepared by K2Ti2O5 with water vapour treatment. TG/DTG techniques were used to investigate their water content and dehydration kinetics. It was shown that chemical formula for hydrogen titanate nanotubes is TiO2·0.58H2O which is close to H2Ti2O5. The activation energy of dehydration from hydrogen titanate nanotubes is about 60 kJ/mol according the calculation of Friedman and Flynn–Wall–Ozawa methods. With multivariate non-linear regression calculation, it was found that dehydration of hydrogen titanate nanotubes is a two-step consecutive reaction. The first step is a reaction of nth order with autocatalysis. The second step is a reaction of nth order.

  • 1.

    Bavykin, DV, Walsh, FC. 2010 Titanate and titania nanotubes: synthesis properties and applications Royal Society of Chemistry Cambridge.

  • 2.

    Bavykin, DV, Friedrich, JM, Walsh, FC. 2006. Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications. Adv Mater. 18 21 28072824 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Kasuga, T, Hiramatsu, M, Hoson, A, Sekino, T, Niihara, K. 1998. Formation of titanium oxide nanotube. Langmuir. 14 12 31603163 .

  • 4.

    Zhang, Z, Goodall, JBM, Brown, S, Karlsson, L, Clark, RJH, Hutchison, JL et al. 2010. Continuous hydrothermal synthesis of extensive 2D sodium titanate (Na2Ti3O7) nano-sheets. Dalton Trans. 39 3 711714 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Kiatkittipong, K, Ye, C, Scott, J, Amal, R. 2010. Understanding hydrothermal titanate nanoribbon formation. Cryst Growth Des. 10 8 36183625 .

  • 6.

    Zhang, S, Chen, Q, Peng, LM. 2005. Structure and formation of H2Ti3O7 nanotubes in an alkali environment. Phys Rev B. 71 1 014104 .

  • 7.

    Yang J , Jin Z, Wang X, Li W, Zhang J, Zhang S, et al. Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2. Dalton Trans. 2003;(20):3898.

    • Search Google Scholar
    • Export Citation
  • 8.

    Sun, X, Li, Y. 2003. Synthesis and characterization of ion-exchangeable titanate nanotubes. Chemistry. 9 10 22292238 .

  • 9.

    Lu, L, Zhu, Y, Li, F, Zhuang, W, Chan, KY, Lu, X. 2010. Carbon titania mesoporous composite whisker as stable supercapacitor electrode material. J Mater Chem. 20 36 7645 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Li, W, Bai, Y, Liu, W, Liu, C, Yang, Z, Feng, X et al. 2011. Single-crystalline and reactive facets exposed anatase TiO2 nanofibers with enhanced photocatalytic properties. J Mater Chem. 21 18 67186724 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Wei MJ , Zhou J, Lu X, Zhu Y, Liu W, Lu L et al. Diffusion of water molecules confined in slits of rutile TiO2 (110) and graphite (001). Fluid Phase Equilibria. 2011; 302(1-2):316-20.

    • Search Google Scholar
    • Export Citation
  • 12.

    Yang, H, Zeng, H. 2005. Synthetic architectures of TiO2/H2Ti5O11 center dot H2O, ZnO/H2Ti5O11 center dot H2O, ZnO/TiO2/H2Ti5O11 center dot H2O, and ZnO/TiO2 nanocomposites. J Am Chem Soc. 127 1 270278 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Friedman HL . Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci. Part C. 1964; 6(1):183-95.

    • Search Google Scholar
    • Export Citation
  • 14.

    Ozawa, T. 1965. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 38 11 18811886 .

  • 15.

    Flynn, JH, Wall, LA. 1966. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand. 70 6 487523.

  • 16.

    Majchrzak-Kuceba, I. 2004. Application of model-free kinetics to the study of dehydration of fly ash-based zeolite. Thermochim Acta. 413 1–2 2329 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Zhang, K, Hong, J, Cao, G, Zhan, D, Tao, Y, Cong, C. 2005. The kinetics of thermal dehydration of copper(II) acetate monohydrate in air. Thermochim Acta. 437 1–2 145149 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Dumitru, R, Carp, O, Budrugeac, P, Niculescu, M, Segal, E. 2011. Nonisothermal decomposition kinetics of [CoC2O4·2.5H2O]n. J Therm Anal Calorim. 103 2 591596 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Hong, J, Guo, G, Zhang, K. 2006. Kinetics and mechanism of non-isothermal dehydration of nickel acetate tetrahydrate in air. J Anal Appl Pyrol. 77 2 111115 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Logvinenko, V, Fedorov, V, Mironov, Y, Drebushchak, V. 2007. Kinetic and thermodynamic stability of cluster compounds under heating. J Therm Anal Calorim. 88 3 687692 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Budrugeac, P. 2009. Application of model-free and multivariate non-linear regression methods for evaluation of the thermo-oxidative endurance of a recent manufactured parchment. J Therm Anal Calorim. 97 2 443451 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Nov 2024 76 0 0
Dec 2024 39 0 0
Jan 2025 53 0 0
Feb 2025 51 0 0
Mar 2025 38 0 0
Apr 2025 7 1 0
May 2025 2 0 0