View More View Less
  • 1 Centro de Tecnología de Recursos Minerales y Cerámica (CETMIC): (CIC-CONICET-CCT La Plata), Camino Centenario y 506, C.C.49, M. B. Gonnet, B1897ZCA, Buenos Aires, Argentina
  • | 2 Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 La Plata, Buenos Aires, Argentina
  • | 3 CIC-PBA, Buenos Aires, Argentina
  • | 4 CONICET, La Plata, Buenos Aires, Argentina
  • | 5 Advanced Ceramic Group, Advanced Key Technologies Division, National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba 305-0047, Ibaraki, Japan
Restricted access

Abstract

During a heating–cooling cycle, zirconia (ZrO2) undergoes a martensitic transformation from monoclinic to tetragonal structure phases, which presents special hysteresis loop in the dilatometry curve at temperatures between 800 and 1100 °C. Monoclinic zirconia (m-ZrO2) particles reinforced ceramic matrix composites not always present this behavior. In order to elucidate this fact a series of zircon–zirconia (ZrSiO4–ZrO2) ceramic composites have been obtained by slip casting and characterized. The final properties were also correlated with the zirconia content (0–30 vol.%). The influence of the martensitic transformation (m–t) in well-dispersed zirconia grains ceramic composite on the thermal behavior was analyzed. Thermal behavior evaluation was carried out; the correlation between the thermal expansion coefficients with the zirconia content showed a deviation from the mixing rule applied. A hysteresis loop was observed in the reversible dilatometric curve of composites with enough zirconia grains (≥10 vol.%). Over this threshold the zirconia content is correlated with the loop area. The transformation temperatures were evaluated and correlated with the zirconia addition. When detected the m–t temperature transformation is slightly influenced by the zirconia content (due to the previously evaluated decrease in the material stiffness) and similar to the temperature reported in literature. The reverse (cooling) transformation temperature is strongly decreased by the ceramic matrix. The DTA results are consistent with the dilatometric analysis, but this technique showed more reliable results. Particularly the endothermic m–t transformation temperature showed to be easily detected even when the only m-ZrO2 present was the product of the slight thermal dissociation of the zircon during the processing of the pure zircon material.

  • 1.

    Torrecillas, R, Moya, JS S De Aza Gros, H, Fantozzi, G. 1993. Microstructure and mechanical properties of mullite-zirconia reaction-sintered composites. Acta Metall Mater. 41 6 16471652 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Lathabai, S, Hay, DG, Wagner, F, Claussen, N. 1996. Reaction-bonded mullite/zirconia composites. J Am Ceram Soc. 79 1 248256 .

  • 3.

    Hamidouche, M, Bouaouadja, N, Osmani, H, Torrecillias, R, Fantozzi, G. 1996. Thermomechanical behavior of mullite-zirconia composite. J Eur Ceram Soc. 16 4 441445 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Jang, B-K. 2005. Microstructure of nano SiC dispersed Al2O3-ZrO2 composites. Mater Chem Phys. 93 2–3 337341 .

  • 5.

    Hirvonen, A, Nowak, R, Yamamoto, Y, Sekino, T, Niihara, K. 2006. Fabrication, structure, mechanical and thermal properties of zirconia-based ceramic nanocomposites. J Eur Ceram Soc. 26 8 14971505 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Sarkar, D, Adak, S, Mitra, NK. 2007. Preparation and characterization of an Al2O3-ZrO2 nanocomposite, Part I: Powder synthesis and transformation behavior during fracture. Compos Part A. 38 1 124131 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Yugeswaran, S, Selvarajan, V, Dhanasekaran, P, Lusvarghi, L. 2008. Transferred arc plasma processing of mullite-zirconia composite from natural bauxite and zircon sand. Vacuum. 83 2 353359 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Rendtorff, N, Garrido, L, Aglietti, E. 2008. Thermal shock behavior of dense Mullite-Zirconia composites obtained by two processing routes. Ceram Int. 34 8 20172024 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Belhouchet, H, Hamidouche, M, Bouaouadja, N, Garnier, V, Fantozzi, G. 2009. Elaboration and characterization of mullite-zirconia composites from gibbsite, boehmite and zircon. Ceramics-Silikaty. 53 3 205210.

    • Search Google Scholar
    • Export Citation
  • 10.

    Ibarra Castro, MN, Almanza Robles, JM, Cortés Hernández, DA, Escobedo Bocardo, JC, Torres Torres, J. 2009. Development of mullite/zirconia composites from a mixture of aluminum dross and zircon. Ceram Int. 35 2 921924 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Mecif, A, Soro, J, Harabi, A, Bonnet, JP. 2010. Preparation of mullite- and zircon-based ceramics using kaolinite and zirconium oxide: a sintering study. J Am Ceram Soc. 93 5 13061312.

    • Search Google Scholar
    • Export Citation
  • 12.

    Chockalingam, S, Traver, HK. 2010. Microwave sintering of β-SiAlON-ZrO2 composites. Mater Des. 31 8 36413646 .

  • 13.

    Tür, YK, Sünbül, AE, Yilmaz, H, Duran, C. 2010. Effect of mullite grains orientation on toughness of mullite/zirconia composites. Ceram Trans. 210:273278.

    • Search Google Scholar
    • Export Citation
  • 14.

    Curran, DJ, Fleming, TJ, Towler, MR, Hampshire, S. 2010. Mechanical properties of hydroxyapatite-zirconia compacts sintered by two different sintering methods. J Mater Sci: Mater Med. 21 4 11091120 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Ma W , Wen L, Guan R, Sun X, Li X. Sintering densification, microstructure and transformation behavior of Al2O3/ZrO2(Y2O3) composites. Mater Sci Eng A. 2008; 477(1-2):100-106.

    • Search Google Scholar
    • Export Citation
  • 16.

    Sahnoune, F, Saheb, N, Chegaar, M, Goeuriot, P. 2010. Microstructure and sintering behavior of mullite-zirconia composites. Mater Sci Forum. 638–642:979984 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Calderon-Moreno, JM, Yoshimura, M. 2005. Al2O3–Y3AlO12(YAG)-ZrO2 ternary composite rapidly solidified from the eutectic melt. J Eur Ceram Soc. 25 8 13651368 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Hamidouche, M, Bouaouadja, N, Torrecillas, R, Fantozzi, G. 2007. Thermomechanical behavior of a zircon–mullite composite. Ceram Int. 33 4 655662 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Naglieri, V, Palmero, P, Montanaro, L. 2009. Preparation and characterization of alumina-doped powders for the design of multi-phasic nano-microcomposites. J Therm Anal Calorim. 97 1 231237 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Shevchenko, AV, Dudnik, EV, Ruban, AK, Redko, VP, Lopato, LM. 2010. Sintering of self-reinforced ceramics in the ZrO2–Y2O3–CeO2–Al2O3 system. Powder Metall Metal Ceram. 49 1–2 4249 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Malek, O, Vleugels, J, Perez, Y P De Baets Liu, J S Van den Berghe Lauwers, B. 2010. Electrical discharge machining of ZrO2 toughened WC composites. Mater Chem Phys. 123 1 114120 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Sarkar, SK, Lee, BT. 2010. Evaluation and comparison of the microstructure and mechanical properties of fibrous Al2O3-(m-ZrO2)/t-ZrO2 composites after multiple extrusion steps. Ceram Int. 36 6 19711976 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Pan, C, Zhang, L, Zhao, Z, Qu, Z, Yang, Q, Huang, X. 2010. Changes in microstructures and properties of Al2O3/ZrO2(Y2O3) with different content of ZrO2. Adv Mater Res. 105–106 1 14 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Rendtorff, N, Garrido, L, Aglietti, E. 2009. Mullite-zirconia-zircon composites: properties and thermal shock resistance. Ceram Int. 35 2 779786 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Rendtorff, N, Garrido, L, Aglietti, E. 2010. Zirconia toughening of mullite-zirconia-zircon composites obtained by direct sintering. Ceram Int. 36 2 781788 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Zender, H, Leistner, H, Searle, H. 1990. ZrO2 materials for applications in the ceramic industry. Interceram. 39 6 3336.

  • 27.

    Kelly, P, Rose, LF. 2002. The martensitic transformation in ceramics-its role in transformation toughening. Prog Mater Sci. 47:463557 .

  • 28.

    Rendtorff NM , Garrido LB, Aglietti EF. Thermal behavior of mullite-zirconia-zircon composites. Influence of zirconia phase transformation. J Therm Anal Calorim. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Wang, C, Zinkevich, M, Aldinger, F. 2006. The zirconia-Hafnia system: DTA measurements and thermodynamic calculations. J Am Ceram Soc. 89 12 37513758 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Luo, X, Zhou, W, Ushakov, SV, Navrotsky, A, Demkov, AA. 2009. Monoclinic to tetragonal transformations in hafnia and zirconia: a combined calorimetric and density functional study. Phys Rev B. 80 13 134119 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Wang, C, Zinkevich, M, Aldinger, F. 2004. On the thermodynamic modeling of the Zr-O system. Calphad. 28 3 281292 .

  • 32.

    Chevalier, J, Gremillard, L, Virkar, AV, Clarke, DR. 2009. The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends. J Am Ceram Soc. 92 9 19011920 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Moriya, Y, Navrotsky, A. 2006. High-temperature calorimetry of zirconia: heat capacity and thermodynamics of the monoclinic-tetragonal phase transition. J Chem Thermodyn. 38 3 211223 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Skovgaard, M, Ahniyaz, A, Sørensen, BF, Almdal, K A van Lelieveld 2010. Effect of microscale shear stresses on the martensitic phase transformation of nanocrystalline tetragonal zirconia powders. J Eur Ceram Soc. 30:27492755 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Ownby, PD, Burt, DD, Stewart, DV. 1991. Experimental study of the thermal expansion of yttria stabilized zirconia ceramics. Thermochim Acta. 190 1 3942 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Mori, T, Yamamura, H, Kobayashi, H, Mitamura, T. 1990. Preparation of high-purity ZrSi04 using sol-gel processing and mechanical properties of the sintered body. J Am Ceram Soc. 75 9 24202426 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Moreno, R, Moya, JS, Requena, J. 1991. Slip casting of zircon by using an organic surfactant. Ceram Int. 17 1 37 .

  • 38.

    Garrido, LB, Aglietti, EF. 2001. Zircon based ceramics by colloidal processing. Ceram Int. 27 5 491497 .

  • 39.

    Shi, Y, Huang, X, Yan, D. 1997. Fabrication of hot-pressed zircon ceramics: mechanical properties and microstructure. Ceram Int. 23 5 457462 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Carbonneau, X, Hamidouche, M, Olagnon, C, Fantozzi, G, Torrecillas, R. 1997. High temperature behavior of a zircon ceramic. Key Eng Mater. 132–136:571574 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Shi, Y, Huang, X, Yan, D. 1999. Mechanical properties and toughening behavior of particulate-reinforced zircon matrix composites. J Mater Sci Lett. 18 3 213216 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Singh, RN. 1990. High-temperature mechanical properties of a uniaxially reinforced zircon-silicon carbide composite. J Am Ceram Soc. 73 8 23992406 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Singh, RN. 1991. Mechanical properties of a zircon matrix composite reinforced with silicon carbide whiskers and filaments. J Mater Sci. 26 7 18391846 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Singh RN . SiC fibre-reinforced zircon composites. Am Ceram Soc Bull 1991; 70(I):55-56.

  • 45.

    Shi, Y, Huang, X, Yan, D. 1998. Toughening of hot-pressed ZrSiO4 ceramics by addition of Y-TZP. Mater Lett. 35 3–4 161165 .

  • 46.

    Alahakoon, WPCM, Burrows, SE, Howes, AP, Karunaratne, BSB, Smith, ME, Dobedoe, R. 2010. Fully densified zircon co-doped with iron and aluminium prepared by sol-gel processing. J Eur Ceram Soc. 30 12 25152523 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Kondoh, I, Tanaka, T, Tamari, N. 1993. Sintering of zircon-silicon carbide whisker composites and their mechanical properties. J Jpn Ceram Soc. 101 3 369372 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Shi, Y, Huang, X, Yan, D. 1997. Synergistic strengthening and toughening of zircon ceramics by the additions of SiC whisker and 3Y-TZP simultaneously. J Eur Ceram Soc. 17:10031010 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Rendtorff, NM, Garrido, LB, Aglietti, EF. 2009. Mechanical and fracture properties of zircon–mullite composites obtained by direct sintering. Ceram Int. 35 7 29072913 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Tartaj, P, Sanz, J, Serna, CJ, Ocana, M. 1994. Zircon formation from amorphous spherical ZrSiO4 particles obtained by hydrolysis of aerosols. J Mater Sci. 29 24 65336538 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Kaiser, A, Lobert, M, Telle, R. 2008. Thermal stability of zircon (ZrSiO4). J Eur Ceram Soc. 28 11 21992211 .

  • 52.

    Váczi, T, Nasdala, L, Wirth, R, Mehofer, M, Libowitzky, E, Häger, T. 2009. On the breakdown of zircon upon “dry” thermal annealing. Miner Petrol. 97:1129 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 2 0 0
Jul 2021 1 0 0
Aug 2021 1 0 0
Sep 2021 1 0 0
Oct 2021 1 0 0
Nov 2021 8 0 0
Dec 2021 1 0 0