Pyrolysis of trisbipyridineiron(II) chloride under controlled thermal conditions and inert atmosphere of argon gas yields a residue of iron nanoparticles. Evolved gas analysis by GC–MS and 1H NMR revealed emission of bipyridine, 6-chlorobipyridine, 6,6′-dichlorbipyridine, bipyridine hydrochloride, and hydrochloric acid as decomposition products. CHN, XRPD, EDXRF, TEM, AFM, and 57Fe Mössbauer spectroscopy of the residue indicated formation of pure iron nanoparticles in the size range of 50–72 nm. Based on these results a mechanism for thermal degradation of trisbipyridineiron(II) chloride has been worked out.
Mehlig, JP, Koehmstedt, PL. 1953. Spectrophotometric determination of copper in ores with 2, 2′-bipyridine. Anal Chem. 25:1920–1921 .
Koeing, RA, Johnson, CR. 1942. Spectrophotometric determination of iron: II use of 2,2′-bipyridine. J Biol Chem. 143:159–163.
Rodriquez-Ramos, MM, Wilker, JJ, Boil, J. 2010. Metal bipyridine complexes in DNA backbones and effect on thermal stability. Inorg Chem. 15:629–639 .
Weizman, H, Tor, Y. 2001. 2,2′-bipyridine lignoside: a novel building block for modifying DNA with intra-duplex metal complexes. J Am Chem Soc. 123:3375–3376 .
Czakis-Sulikowska, D, Kaluzna, J, Radwańska-Doczekalska, J. 1998. Thermal studies of new Cu(I) and Ag(I) complexes with bipyridine isomers. J Therm Anal. 54:103–113 .
Czakis-Sulikowska, D, Malinowska, A, Markiewicz, M. 2000. Synthesis and thermal decomposition of new complexes of bipyridine isomers with Zn(II) and Cd(II) oxalates. J Therm Anal Colorim. 60:151–156 .
Czakis-Sulikowska, D, Kaluzna, J, Radwańska-Doczekalska, J. 2000. Synthesis, properties and thermal decomposition of bipyridine-oxalato complexes with Mn(II), Co(II), Ni(II) and Cu(II). Polish J Chem. 74:607–614.
Czakis-Sulikowska, D, Czylkowska, A. 2003. Thermal and other properties of complexes of Mn(II), Co (II) and Ni(II) with 2,2′-bipyridine and trichloroacetates. J Therm Anal Colorim. 74:349–360 .
Czakis-Sulikowska, D, Czylkowska, A. 2003. Complexes of Mn(II), Co (II), Ni(II) and Cu(II) with 4,4′-bipyridine and dichloroacetates. J Therm Anal Colorim. 71:395–405 .
Czylkowska, A, Markiewicz, M. 2010. Coordination behavior and thermolysis of some rare-earth complexes with 4,4′-bipyridine and di- or trichloroacetates. J Therm Anal Colorim. 100:717–723 .
Czylkowska, A, Czakis-Sulikowska, D, Kaczmarek, A, Markiewicz, M. 2011. Thermal behavior and other properties of Pr(III), Sm(III), Eu(III), Gd(III), Tb(III) complexes with 4,4′-bipyridine and trichloroacetates. J Therm Anal Colorim. 105:331–339 .
Czakis-Sulikowska, D, Radwańnska-Doczekalska, J, Markiewicz, M, Pietrzak, M. 2008. Thermal characterization of new complexes of Zn(II) and Cd(II) with some bipyridine isomers and propionates. J Therm Anal Colorim. 93:789–794 .
Kumar D , Kapoor IPS, Singh G, Geol N, Singh UP. Preparation, X-ray crystallography and thermolysis of transition metal nitrates of 2,2′-bipyridine (Part 63). J Therm Anal Colorim. 2011. doi: .
Tian, L, Ren, N, Zhang, JJ, Liu, HM, Sun, SJ, Ye, HM, Wu, KZ. 2010. Synthesis and thermal decomposition kinetics of two lanthanide complexes with cinnamic acid and 2,2′-bipyridine. J Therm Anal Colorim. 99:349–356 .
Wanner, S, Hilaire, L, Wehrer, P, Hindermann, JP, Maire, G. 2000. Obtaining tungsten bipyridine complexes via low temperature thermal treatment. Appl Catal A-Gen. 203:55–70 .
Lee, RH, Griwold, E, Kleinberg, J. 1964. Studies on the stepwise controlled decomposition of 2,2′-bipyridine complexes of Co(II) and Ni(II) chlorides. Inorg Chem. 3:1278–1283 .
Dhar, SK, Basolo, F. 1963. Thermal decomposition of the tris(2,2′-bipyridine) complexes of some first row transition group elements in the solid state. J Inorg Nucl Chem. 25:37–44 .
Bujewski, A, Walewski, M, Grzedzicki, K. 1991. Synthesis and thermal investigations of [Rh(bpy)3]X3, (bpy = 2,2′-dipyridyl; X = Cl-, Br-, I-, ReO4- and [M(bpy)3][CdnX2n + 3] (X = Cl-, Br-, I-) type complexes. Thermochim Acta. 185:91–98 .
Akabori, K, Matsuo, H, Yamamoto, Y. 1971. Thermal properties of mono(2,2′-bipyrinde)cobalt(II) and nickel(II) chloride. J Inorg Nucl Chem. 33:2593–2601 .
Czakis-Sulikowska, D, Kałużna-Czaplińska, J. 2000. Thermal properties of complexes of Mn(II), Fe(II), Co(II), Ni(II) with 2,2′-bipyridine or 4,4-bipyridine and thiocyanates. J Therm Anal Colorim. 62:821–830 .
Guo, L, Huang, Q, Li, X, Yang, S. 2001. Iron nanoparticles: synthesis and applications in surface enhanced Raman scattering and electrocatalysis. Phys Chem Chem Phys. 3:1661–1665 .
Yang, Y, Liu, X, Guo, X, Xu, B. 2011. Synthesis of nano onion-like fullerenes by chemical vapor deposition using an iron catalyst supported on sodium chloride. J Nanopart Res. 13:1979–1986 .
Huang, K, Chou, K. 2007. Microstructure changes to iron nanoparticles during discharge/charge cycles. Electrochem Commun. 9:1907–1912 .
Beach, DB, Rondinone, AJ, Sumpter, BG, Labinov, SD, Richard, RK. 2007. Solid-state combustion of metallic nanoparticles: new possibilities for alternative energy carrier. J Energy Res Technol. 129:29–32 .
Šafařík, I, Horská, K, Šafaříková, M. 2011. Magnetic nanoparticles for biomedicine. Fundamental Biomedical Technologies. 5:363–372 .
Najaa, G, Apiratikula, R, Pavasante, P, Voleskya, B, Hawari, J. 2009. Dynamic and equilibrium studies of the RDX removal from soil using CMC-coated zerovalent iron nanoparticles. Environ Pollut. 157:2405–2412 .
Elliott, DW, Lien, H, Zhang, W. 2009. Degradation of lindane by zero-valent iron nanoparticles. J Environ Eng. 135:317–324 .
Zhang, D, Wei, S, Kaila, C, Su, X, Wu, J, Karki, AB, Young, DP, Guo, Z. 2010. Carbon-stabilized iron nanoparticles for environmental remediation. Nanoscale. 2:917–919 .
Nazir, R, Mazhar, M, Siddique, M, Hussain, ST. 2009. Effect of particle size and alloying with different metals on 57Fe Mossbauer spectra. Hyperfine Interact. 189:85–89 .
Groβe G Mos-90 Version 2.2 Manual and program. Documentation 2nd ed. March 1992.
Basalo, F, Johnson, R. 1964. Preparations and reactions of coordination compounds R Johnson eds. Coordination chemistry, the chemistry of metal complexes Benjamin Inc. New York.
Inskeep, RG. 1962. Infra-red spectra of metal complex ions below 600 cm−1: The spectra of the tris complexes of 1,10-phenanthroline and 2,2′-bipyridine with transition metals iron (II) through zinc (II). J Inorg Nucl Chem. 24:763–776 .
Miller, JM, Balasanmugam, K. 1989. Characterization of metal complexes of 1,10-phenanthroline, 2, 2′-bipyridine and their derivatives by fast atomic spectrometry. Can J Chem. 67:1496–1500 .
Charlet, GR. 1989 Colorimetric determination of elements Elsevier Science Ltd. New York.
Nakanishi, C Saorilkeda Isobe, T, Senna, M. 2002. Silica- [Fe(bpy)3]2+ composite particles with photo-responsive change of color and magnetic property. Mater Res Bull. 37:647–651 .
Sato, H, Tominaga, T. 1976. Mössbauer studies of the thermal decomposition of tris(2,2′-bipyridine)iron(II) chloride and the structure of the isomers of 2,2′-bipyridineiron(II) chloride. Bull Chem Soc Jpn. 49:697–700 .
Sato, H, Tominaga, T. 1975. A Mössbauer study on the thermal decomposition of tris(2,2′-bipyridine)iron(II) chloride. Radiochem Radioanal Lett. 22:3–10.
Keuleers, R, Janssen, J, Desseyn, HO. 1999. Instrument dependence and influence of heating rate, mass, ΔH, purge gas and flow rate on the difference between experimental and programmed temperature of the instrument. Thermochim Acta. 333:67–71 .
Reich, L, Patel, SH, Stivala, SS. 1989. Factors affecting the thermal decomposition of cadmium carbonate by TG. Thermochim Acta. 138:147–160 .
Berbenni, V, Marini, A, Bruni, G, Zerlia, T. 1995. TG/FTIR: an analysis of the conditions affecting the combined TG/spectral response. Thermochim Acta. 258:125–133 .
Reiff, WM, Dockum, B, Weber, MA, Frankel, RB. 1975. Magnetic ordering of mono(diimine)iron(II) chlorides, (2,2′-bipyridine)dichloroiron and (5,5′-dimethyl-2,2′-bipyridine)dichloroiron. Inorg Chem. 14:800–806 .
Reiff, WM, Long, GJ. 1984. Mössbauer spectroscopy and coordination chemistry of iron GJ Long eds. Mössbauer spectroscopy applied to inorganic chemistry 1 Plenum Press New York 245–249.
Choi, CJ, Dong, XL, Kim, BK. 2001. Characterization of Fe and Co nanoparticles synthesized by chemical vapor condensation. Scr Mater. 44:2225–2229 .
Sen, P, Ghosh, J, Abdullah, A, Kumar, P. 2003. Preparation of Cu, Ag, Fe and Al nanoparticles by exploding wire technique Vandana. Proc Indian Acad Sci (Chem Sci). 115:499–508 .
Shao, H, Lee, H, Huang, Y, Ko, I, Kim, C. 2005. Control of iron nanoparticles size and shape by thermal decomposition method. IEEE Trans Magn. 41:3388–3390 .
He, Y, Sahoo, Y, Wang, S, Luo, H, Prasad, PN, Swihart, MT. 2006. Laser-driven synthesis and magnetic properties of iron nanoparticles. J Nanopart Res. 8:335–342 .
Laurent, S, Forge, D, Port, M, Roch, A, Robic, C, Elst, LV, Muller, RN. 2008. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physiochemical characterization and biological applications. Chem Rev. 108:2064–2110 .