View More View Less
  • 1 Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
  • | 2 Applied Chemistry Research Centre, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Lahore 54600, Pakistan
  • | 3 Department of Chemistry, University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia
  • | 4 Physics Division, PINSTECH, P.O. Nilore, Islamabad, Pakistan
  • | 5 Material Science Laboratory, Department of Physics, Quaid-i-Azam University, Islamabad 45320, Pakistan
  • | 6 HEJ Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
Restricted access

Abstract

Pyrolysis of trisbipyridineiron(II) chloride under controlled thermal conditions and inert atmosphere of argon gas yields a residue of iron nanoparticles. Evolved gas analysis by GC–MS and 1H NMR revealed emission of bipyridine, 6-chlorobipyridine, 6,6′-dichlorbipyridine, bipyridine hydrochloride, and hydrochloric acid as decomposition products. CHN, XRPD, EDXRF, TEM, AFM, and 57Fe Mössbauer spectroscopy of the residue indicated formation of pure iron nanoparticles in the size range of 50–72 nm. Based on these results a mechanism for thermal degradation of trisbipyridineiron(II) chloride has been worked out.

  • 1.

    Mehlig, JP, Koehmstedt, PL. 1953. Spectrophotometric determination of copper in ores with 2, 2′-bipyridine. Anal Chem. 25:19201921 .

  • 2.

    Koeing, RA, Johnson, CR. 1942. Spectrophotometric determination of iron: II use of 2,2′-bipyridine. J Biol Chem. 143:159163.

  • 3.

    Rodriquez-Ramos, MM, Wilker, JJ, Boil, J. 2010. Metal bipyridine complexes in DNA backbones and effect on thermal stability. Inorg Chem. 15:629639 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Weizman, H, Tor, Y. 2001. 2,2′-bipyridine lignoside: a novel building block for modifying DNA with intra-duplex metal complexes. J Am Chem Soc. 123:33753376 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Czakis-Sulikowska, D, Kaluzna, J, Radwańska-Doczekalska, J. 1998. Thermal studies of new Cu(I) and Ag(I) complexes with bipyridine isomers. J Therm Anal. 54:103113 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Czakis-Sulikowska, D, Malinowska, A, Markiewicz, M. 2000. Synthesis and thermal decomposition of new complexes of bipyridine isomers with Zn(II) and Cd(II) oxalates. J Therm Anal Colorim. 60:151156 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Czakis-Sulikowska, D, Kaluzna, J, Radwańska-Doczekalska, J. 2000. Synthesis, properties and thermal decomposition of bipyridine-oxalato complexes with Mn(II), Co(II), Ni(II) and Cu(II). Polish J Chem. 74:607614.

    • Search Google Scholar
    • Export Citation
  • 8.

    Czakis-Sulikowska, D, Czylkowska, A. 2003. Thermal and other properties of complexes of Mn(II), Co (II) and Ni(II) with 2,2′-bipyridine and trichloroacetates. J Therm Anal Colorim. 74:349360 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Czakis-Sulikowska, D, Czylkowska, A. 2003. Complexes of Mn(II), Co (II), Ni(II) and Cu(II) with 4,4′-bipyridine and dichloroacetates. J Therm Anal Colorim. 71:395405 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Czylkowska, A, Markiewicz, M. 2010. Coordination behavior and thermolysis of some rare-earth complexes with 4,4′-bipyridine and di- or trichloroacetates. J Therm Anal Colorim. 100:717723 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Czylkowska, A, Czakis-Sulikowska, D, Kaczmarek, A, Markiewicz, M. 2011. Thermal behavior and other properties of Pr(III), Sm(III), Eu(III), Gd(III), Tb(III) complexes with 4,4′-bipyridine and trichloroacetates. J Therm Anal Colorim. 105:331339 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Czakis-Sulikowska, D, Radwańnska-Doczekalska, J, Markiewicz, M, Pietrzak, M. 2008. Thermal characterization of new complexes of Zn(II) and Cd(II) with some bipyridine isomers and propionates. J Therm Anal Colorim. 93:789794 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Kumar D , Kapoor IPS, Singh G, Geol N, Singh UP. Preparation, X-ray crystallography and thermolysis of transition metal nitrates of 2,2′-bipyridine (Part 63). J Therm Anal Colorim. 2011. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Tian, L, Ren, N, Zhang, JJ, Liu, HM, Sun, SJ, Ye, HM, Wu, KZ. 2010. Synthesis and thermal decomposition kinetics of two lanthanide complexes with cinnamic acid and 2,2′-bipyridine. J Therm Anal Colorim. 99:349356 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Wanner, S, Hilaire, L, Wehrer, P, Hindermann, JP, Maire, G. 2000. Obtaining tungsten bipyridine complexes via low temperature thermal treatment. Appl Catal A-Gen. 203:5570 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Lee, RH, Griwold, E, Kleinberg, J. 1964. Studies on the stepwise controlled decomposition of 2,2′-bipyridine complexes of Co(II) and Ni(II) chlorides. Inorg Chem. 3:12781283 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Dhar, SK, Basolo, F. 1963. Thermal decomposition of the tris(2,2′-bipyridine) complexes of some first row transition group elements in the solid state. J Inorg Nucl Chem. 25:3744 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Bujewski, A, Walewski, M, Grzedzicki, K. 1991. Synthesis and thermal investigations of [Rh(bpy)3]X3, (bpy = 2,2′-dipyridyl; X = Cl-, Br-, I-, ReO4- and [M(bpy)3][CdnX2n + 3] (X = Cl-, Br-, I-) type complexes. Thermochim Acta. 185:9198 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Akabori, K, Matsuo, H, Yamamoto, Y. 1971. Thermal properties of mono(2,2′-bipyrinde)cobalt(II) and nickel(II) chloride. J Inorg Nucl Chem. 33:25932601 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Czakis-Sulikowska, D, Kałużna-Czaplińska, J. 2000. Thermal properties of complexes of Mn(II), Fe(II), Co(II), Ni(II) with 2,2′-bipyridine or 4,4-bipyridine and thiocyanates. J Therm Anal Colorim. 62:821830 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Guo, L, Huang, Q, Li, X, Yang, S. 2001. Iron nanoparticles: synthesis and applications in surface enhanced Raman scattering and electrocatalysis. Phys Chem Chem Phys. 3:16611665 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Yang, Y, Liu, X, Guo, X, Xu, B. 2011. Synthesis of nano onion-like fullerenes by chemical vapor deposition using an iron catalyst supported on sodium chloride. J Nanopart Res. 13:19791986 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Huang, K, Chou, K. 2007. Microstructure changes to iron nanoparticles during discharge/charge cycles. Electrochem Commun. 9:19071912 .

  • 24.

    Beach, DB, Rondinone, AJ, Sumpter, BG, Labinov, SD, Richard, RK. 2007. Solid-state combustion of metallic nanoparticles: new possibilities for alternative energy carrier. J Energy Res Technol. 129:2932 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Šafařík, I, Horská, K, Šafaříková, M. 2011. Magnetic nanoparticles for biomedicine. Fundamental Biomedical Technologies. 5:363372 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Najaa, G, Apiratikula, R, Pavasante, P, Voleskya, B, Hawari, J. 2009. Dynamic and equilibrium studies of the RDX removal from soil using CMC-coated zerovalent iron nanoparticles. Environ Pollut. 157:24052412 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Elliott, DW, Lien, H, Zhang, W. 2009. Degradation of lindane by zero-valent iron nanoparticles. J Environ Eng. 135:317324 .

  • 28.

    Zhang, D, Wei, S, Kaila, C, Su, X, Wu, J, Karki, AB, Young, DP, Guo, Z. 2010. Carbon-stabilized iron nanoparticles for environmental remediation. Nanoscale. 2:917919 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Nazir, R, Mazhar, M, Siddique, M, Hussain, ST. 2009. Effect of particle size and alloying with different metals on 57Fe Mossbauer spectra. Hyperfine Interact. 189:8589 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Groβe G Mos-90 Version 2.2 Manual and program. Documentation 2nd ed. March 1992.

  • 31.

    Basalo, F, Johnson, R. 1964. Preparations and reactions of coordination compounds R Johnson eds. Coordination chemistry, the chemistry of metal complexes Benjamin Inc. New York.

    • Search Google Scholar
    • Export Citation
  • 32.

    Inskeep, RG. 1962. Infra-red spectra of metal complex ions below 600 cm−1: The spectra of the tris complexes of 1,10-phenanthroline and 2,2′-bipyridine with transition metals iron (II) through zinc (II). J Inorg Nucl Chem. 24:763776 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Miller, JM, Balasanmugam, K. 1989. Characterization of metal complexes of 1,10-phenanthroline, 2, 2′-bipyridine and their derivatives by fast atomic spectrometry. Can J Chem. 67:14961500 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Charlet, GR. 1989 Colorimetric determination of elements Elsevier Science Ltd. New York.

  • 35.

    Nakanishi, C Saorilkeda Isobe, T, Senna, M. 2002. Silica- [Fe(bpy)3]2+ composite particles with photo-responsive change of color and magnetic property. Mater Res Bull. 37:647651 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Sato, H, Tominaga, T. 1976. Mössbauer studies of the thermal decomposition of tris(2,2′-bipyridine)iron(II) chloride and the structure of the isomers of 2,2′-bipyridineiron(II) chloride. Bull Chem Soc Jpn. 49:697700 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Sato, H, Tominaga, T. 1975. A Mössbauer study on the thermal decomposition of tris(2,2′-bipyridine)iron(II) chloride. Radiochem Radioanal Lett. 22:310.

    • Search Google Scholar
    • Export Citation
  • 38.

    Keuleers, R, Janssen, J, Desseyn, HO. 1999. Instrument dependence and influence of heating rate, mass, ΔH, purge gas and flow rate on the difference between experimental and programmed temperature of the instrument. Thermochim Acta. 333:6771 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Reich, L, Patel, SH, Stivala, SS. 1989. Factors affecting the thermal decomposition of cadmium carbonate by TG. Thermochim Acta. 138:147160 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Berbenni, V, Marini, A, Bruni, G, Zerlia, T. 1995. TG/FTIR: an analysis of the conditions affecting the combined TG/spectral response. Thermochim Acta. 258:125133 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Reiff, WM, Dockum, B, Weber, MA, Frankel, RB. 1975. Magnetic ordering of mono(diimine)iron(II) chlorides, (2,2′-bipyridine)dichloroiron and (5,5′-dimethyl-2,2′-bipyridine)dichloroiron. Inorg Chem. 14:800806 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Reiff, WM, Long, GJ. 1984. Mössbauer spectroscopy and coordination chemistry of iron GJ Long eds. Mössbauer spectroscopy applied to inorganic chemistry 1 Plenum Press New York 245249.

    • Search Google Scholar
    • Export Citation
  • 43.

    Choi, CJ, Dong, XL, Kim, BK. 2001. Characterization of Fe and Co nanoparticles synthesized by chemical vapor condensation. Scr Mater. 44:22252229 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Sen, P, Ghosh, J, Abdullah, A, Kumar, P. 2003. Preparation of Cu, Ag, Fe and Al nanoparticles by exploding wire technique Vandana. Proc Indian Acad Sci (Chem Sci). 115:499508 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Shao, H, Lee, H, Huang, Y, Ko, I, Kim, C. 2005. Control of iron nanoparticles size and shape by thermal decomposition method. IEEE Trans Magn. 41:33883390 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    He, Y, Sahoo, Y, Wang, S, Luo, H, Prasad, PN, Swihart, MT. 2006. Laser-driven synthesis and magnetic properties of iron nanoparticles. J Nanopart Res. 8:335342 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Laurent, S, Forge, D, Port, M, Roch, A, Robic, C, Elst, LV, Muller, RN. 2008. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physiochemical characterization and biological applications. Chem Rev. 108:20642110 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)