View More View Less
  • 1 School of Materials Science and Engineering, Tongji University, Shanghai 201804, China xulinglinok@hotmail.com
  • | 2 Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Shanghai 201804, China
Restricted access

Abstract

The influence of calcium sulfate with different reactivities (anhydrite, α-hemihydrate, and gypsum) on the Portland cement–calcium aluminate cement (PC/CAC) mixtures was presented in the paper. The hydration process and main hydration products (ettringite) of the binders with different content of calcium sulfate was investigated by isothermal conduction calorimetry, setting times, compressive strength, X-ray diffraction (XRD) analysis, and environmental scanning electronic microscope (ESEM) analysis. It is found that the pure PC/CAC mixture without any calcium sulfate addition exhibits very slow hydration kinetics during the first 2 days. By adding calcium sulfate, the setting of the PC/CAC mixture is delayed, but the hydration can be accelerated. The results also show that the reactivity and the amount of the calcium sulfate determine the balance between the hydration products of ettringite and monosulphoaluminate, and also the early hydration kinetics not only in the formation content but in the location of ettringite. In general, when a high content of reactive α-hemihydrate is added, much secondary gypsum forms in voids between cement granules which exert adverse effects on the properties of PC/CAC mixtures. Additionally, ettringite can be formed stably and good binders having good physical properties can be obtained when low reactive anhydrite is added.

  • 1.

    Wu, ZB, Guan, BH, Lou, WB, Ye, QQ, Fu, HL. 2009. Calorimetric study of calcium aluminate cement blended with flue gas desulfurization gypsum. J Therm Anal Calorim. 98 3 737742 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Gu, P, Beaudoin, JJ, Quinn, EG, Myers, RE. 1997. Early strength development and hydration of ordinary Portland cement calcium aluminate cement pastes. Adv Cem Res. 6 2 5358.

    • Search Google Scholar
    • Export Citation
  • 3.

    Amathieu L , Bier A, Scrivener K. Mechanisms of set acceleration of Portland cement through CAC addition. In: International Conference on Calcium Aluminate Cement, Edinburgh; 2001.

    • Search Google Scholar
    • Export Citation
  • 4.

    Gu, P, Fu, Y, Xie, P, Beaudoin, JJ. 1994. A study of the hydration and setting behavior of OPC-HAC pastes. Cem Concr Res. 24 4 682694 .

  • 5.

    Taylor, HFW. 1997 Cement chemistry 2 Thomas Telford London .

  • 6.

    Zhang, X, Yang, Y, Ong, CK. 1997. Study of early hydration of OPC-HAC blends by microwave and calorimetry technique. Cem Concr Res. 27 9 14191428 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Garces, P, Alcocel, EG, Andreau, CG. 1998. Hydration characteristics of high alumina cement–Portland cement mixtures. Zkg Int. 51 11 646649.

    • Search Google Scholar
    • Export Citation
  • 8.

    Osborne, GJ, Brecem, A. 1994. Rapid hardening cement-based on high alumina cement. Proc ICE Struct B. 104 1 93100 .

  • 9.

    Majumdar, AJ, Singh, B, Edmonds, RN. 1990. Hydration of mixtures of cement-Fondu aluminous cement and granulated blast furnace slag. Cem Concr Res. 20 2 197208 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Gu, P, Beaudoin, JJ. 1995. Effect of lithium salts on Portland cement-high alumina cement paste hydration. J Mater Sci Lett. 14 17 12071209 .

  • 11.

    Gu, P, Beaudoin, JJ. 1997. Lithium salt-based additives for early strength-enhancement of ordinary Portland cement-high alumina cement paste. J Mater Sci Lett. 16 9 696698 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Hirano, Y, Makida, K, Komatsu, R, Ikeda, K. 2006. Dimensional change of self-leveling materials developed by mixing aluminous cement, Portland cement and anhydrite at 35 degrees C. Trans Mater Res Soc Jpn. 31 2 325328.

    • Search Google Scholar
    • Export Citation
  • 13.

    Seifert, S, Neubauer, J, Goetz-Neunhoeffer, F, Motzet, H. 2009. Application of two-dimensional XRD for the characterization of the microstructure of self-leveling compounds. Powder Diffr. 24 2 107111 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Bier TA , Nukita M. Influence of redispersible powder on expansion in self leveling underlayments. In: Proceedings of the 6th Asian Symposium on Polymers in Concrete. 2009. p. 2227.

    • Search Google Scholar
    • Export Citation
  • 15.

    Onishi, K, Bier, TA. 2010. Investigation into relations among technological properties, hydration kinetics and early age hydration of self-leveling underlayments. Cem Concr Res. 40 7 10341040 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    A De Gasparo Herwegh, M, Zurbriggen, R, Scrivener, K. 2009. Quantitative distribution patterns of additives in self-leveling flooring compounds (underlayments) as function of application, formulation and climatic conditions. Cem Concr Res. 39 4 313323 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Sang, GC, Liu, JP. 2010. Study of properties of Portland and aluminate cementitious composited grouting material. Mater Res Innov. 14 3 200205 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Sakai, E, Nikaido, Y, Itoh, T, Daimon, M. 2004. Ettringite formation and microstructure of rapid hardening cement. Cem Concr Res. 34 9 16691673 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Kighelman J , Scrivener K, Zurbriggen R, editors. Effect of the mix binder system on the hydration of self-leveling compounds. 16th international conference on building materials; 2006; Weimar.

    • Search Google Scholar
    • Export Citation
  • 20.

    Weyer, HJ, Muller, I, Schmitt, B, Bosbach, D, Putnis, A. 2005. Time-resolved monitoring of cement hydration: influence of cellulose ethers on hydration kinetics. Nucl Instrum Methods B. 238 4 102106 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Odler, I, Colan-Subauste, J. 1999. Investigations on cement expansion associated with ettringite formation. Cem Concr Res. 29 5 731735 .

  • 22.

    Meifei, S, Zhongyan, D, Kezong, L. 1982. Effects of different forms of calcium sulfate on the hydration and properties of casting cement. J Chin Silic Soc. 10 3 298310.

    • Search Google Scholar
    • Export Citation
  • 23.

    Xiuji, F, hui, W. 1984. The influence of gypsum on some properties of sulphoaluminate high early strength cement. J Chin Silic Soc. 12 2 166178.

    • Search Google Scholar
    • Export Citation
  • 24.

    Zhang, H, Odler, I. 1996. Investigations on high SO3 portland clinkers and cements—properties of cements. Cem Concr Res. 26 9 13151324 .

  • 25.

    Evju, C, Hansen, S. 2005. The kinetics of ettringite formation and dilatation in a blended cement with beta-hemihydrate and anhydrite as calcium sulfate. Cem Concr Res. 35 12 23102321 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Pourchet, S, Regnaud, L, Perez, JP, Nonat, A. 2009. Early C3A hydration in the presence of different kinds of calcium sulfate. Cem Concr Res. 39 11 989996 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Puri, A, Voicu, G, Badanoiu, A. 2010. Expansive binders in the Portland cement-calcium aluminate cement- calcium sulfate system. Rev Chim-Bucharest. 61 8 740744.

    • Search Google Scholar
    • Export Citation
  • 28.

    Bensted, J, Barnes, P. 2008 Structure and performance of cements 2 Taylor & Francis group London.

  • 29.

    Gu, P, Beaudoin, JJ. 1997. A conduction calorimetric study of early hydration of ordinary Portland cement high alumina cement pastes. J Mater Sci. 32 14 38753881 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Sauvat, N, Sell, R, Mougel, E, Zoulalian, A. 1999. A study of ordinary portland cement hydration with wood by isothermal calorimetry. Holzforschung. 53 1 104108 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Sha W . Differential scanning calorimetry study of the hydration products in Portland cement pastes with metakaolin replacement. In: Proceedings of the International Conference on Advances in Building Technology, Vols. I, II. 2002. p. 8818.

    • Search Google Scholar
    • Export Citation
  • 32.

    Evju, C. 2003. Initial hydration of cementitious systems using a simple isothermal calorimeter and dynamic correction. J Therm Anal Calorim. 71 3 829840 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Pane, I, Hansen, W. 2005. Investigation of blended cement hydration by isothermal calorimetry and thermal analysis. Cem Concr Res. 35 6 11551164 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Pacewska, B, Wilinska, I, Blonkowski, G. 2008. Investigations of cement early hydration in the presence of chemically activated fly ash—use of calorimetry and infrared absorption methods. J Therm Anal Calorim. 93 3 769776 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Ylmen, R, Wadso, L, Panas, I. 2010. Insights into early hydration of Portland limestone cement from infrared spectroscopy and isothermal calorimetry. Cem Concr Res. 40 10 15411546 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Gruyaert, E, Robeyst, N N De Belie 2010. Study of the hydration of Portland cement blended with blast-furnace slag by calorimetry and thermogravimetry. J Therm Anal Calorim. 102 3 941951 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Gawlicki, M, Nocun-Wczelik, W, Bak, L. 2010. Calorimetry in the studies of cement hydration. J Therm Anal Calorim. 100 2 571576 .

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2021 4 0 0
Jun 2021 6 3 2
Jul 2021 4 0 0
Aug 2021 7 1 0
Sep 2021 2 3 5
Oct 2021 2 0 0
Nov 2021 0 0 0