View More View Less
  • 1 Tomsk Polytechnic University, 30, Lenin Avenue, Tomsk, Russia, 634050
Restricted access

Abstract

Kinetic changes in the phase composition of the Li2CO3–Fe2O3–ZnO system are investigated by the methods of X-ray phase and TG/DTG analysis. The powder mixture components were in the ratio corresponding to Li0.4Fe2.4Zn0.2O4 ferrite. The synthesis was performed by thermal heating of mixture reagents in a furnace and heating of the mixture upon exposure to high-power beam of accelerated electrons with energy of 2.4 MeV. It is demonstrated that the sequence of phase formation is independent of the heating method. The radiative effect of synthesis intensification is most strongly manifested in the initial stage of forming lithium monoferrite phases. The rate of diffusion interaction of intermediate phases also increases upon exposure to the electron beam in the stage of end-product formation.

  • 1.

    Berbennia, V, Marinia, A, Matteazzib, P, Riccerib, R, Welhamc, NJ. 2003. Solid-state formation of lithium ferrites from mechanically activated Li2CO3–Fe2O3 mixtures. J Eur Ceram Soc. 23:527536 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Yasuoka, M, Nishimura, Y, Nagaoka, T, Watari, K. 2006. Influence of different methods of controlling microwave sintering. J Therm Anal Calorim. 83:407410 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Jugović, D, Mitrić, M, Cvjetićanin, N, Jančar, B, Mentus, S, Uskoković, D. 2008. Synthesis and characterization of LiFePO4/C composite obtained by sonochemical method. J Solid State Ionics. 179:415419 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Zhang, B, Chen, G, Xu, P, Lu, Z. 2007. Effect of ultrasonic irradiation on the composition and electrochemical properties of cathode material LiNi0.5Mn0.5O2 for lithium batteries. J Solid State Ionics. 178:12301234 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Lyakhov, NZ, Boldyrev, VV, Voronin, AP, Gribkov, OS, Bochkarev, LG, Rusakov, SV, Auslender, VL. 1995. Electron beam stimulated chemical reaction in solids. J Therm Anal Calorim. 43:2131 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Surzhikov, AP, Pritulov, AM, Ivanov, YF, Shabardin, RS, Usmanov, RU. 2001. Electron-microscopic study of morphology and phase composition of lithium-titanium ferrites. Russian Phys J. 44:420423 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Baba, PD, Argentina, GM, Courtney, WE, Dionne, GF, Temme, DH. 1972. Fabrication and properties of microwave lithium ferrites. IEEE Trans Magn. 8:8394 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Jiang, XN, Lan, ZW, Yu, Z, Liu, PY, Chen, DZ, Liu, CY. 2009. Sintering characteristics of LiZn ferrites fabricated by a sol–gel process. J Magn Magn Mater. 321:5255 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Surzhikov, AP, Pritulov, AM, Lysenko, EN, Sokolovskii, AN, Vlasov, VA, Vasendina, EA. 2010. Calorimetric investigation of radiation-thermal synthesized lithium pentaferrite. J Therm Anal Calorim. 101:1113 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Surzhikov, AP, Sokolovskii, AN, Vlasov, VA, Vasendina, EA. 2009. Synthesis of lithium-zinc ferrite in beam of accelerated electrons. Rare Metals Spec Issue. 28:418420.

    • Search Google Scholar
    • Export Citation
  • 11.

    Surzhikov, AP, Lysenko, EN, Vasendina, EA, Sokolovskii, AN, Vlasov, VA, Pritulov, AM. 2011. Thermogravimetric investigation of the effect of annealing conditions on the soft ferrite phase homogeneity. J Therm Anal Calorim. 104:613617 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Surzhikov AP , Pritulov AM, Lysenko EN, Sokolovskii AN, Vlasov VA, Vasendina EA. Influence of solid-phase ferritization method on phase composition of lithium-zinc ferrites with various concentration of zinc. J Therm Anal Calorim. 2011 (Online First).

    • Search Google Scholar
    • Export Citation
  • 13.

    Lin, DM, Wang, HS, Lin, ML, Lin, MH, Wu, YC. 1999. TG(M) and DTG(M) techniques and some of their applications on material study. J Therm Anal Calorim. 58:347353 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Shiliakov SM , Maltsev VI, Ivolga VV, Naiden EP. Atomic composition of lithium-zinc-iron spinels. Reference Izvestiya Vysshikh Uchebnykh Zavedenii, Moskva. Ser.: Fizika. 1977;11116.

    • Search Google Scholar
    • Export Citation
  • 15.

    Tobón-Zapata, GE, Ferrer, GE, Etcheverry, SB, Baran, EJ. 2000. Thermal behavior of pharmacologically active lithium compounds. J Therm Anal Calorim. 61:2935 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Rama Rao, S, Sunandana, CS. 1996. Quenched lithium carbonate. J Phys Chem Solids. 57:315 .

  • 17.

    SY, An, Shim, I-B, Kim, CS. 2005. Synthesis and magnetic properties of LiFe5O8 powders by a sol-gel process. J Magn Magn Mater. 290:15511554 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Ahniyaz, A, Fujiwara, T, Song, S-W, Yoshimura, M. 2002. Low temperature preparation of β-LiFe5O8 fine particles by hydrothermal ball milling. J Solid State Ionics. 151:419423 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Gorter, EW. 1954. Saturation magnetisation and crystal chemistry of ferrimagnetic oxides. J Philips Res Rep. 9:295.

  • 20.

    Smit, J, Win, HPJ. 1959 Ferrites, Physical properties of ferrimagnetic oxides in relation to their technical applications Philips Technical Library Eindhoven 299.

    • Search Google Scholar
    • Export Citation