View More View Less
  • 1 State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
  • | 2 Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 100029, China
  • | 3 Petrochemical Research Institute of Petrochina, Beijing 100195, China
Restricted access

Abstract

The boehmite nanofibers were prepared by using NaAlO2 and Al2(SO4)3 as the starting materials without any surfactant. The phase transitions of the boehmite nanofibres against different temperature were studied and various phases were derived from well-crystallized boehmite nanofibers. All these phases had the same morphology even after high temperature calcination. In addition, the retention of specific surface area of the samples were very high because of the limited aggregation occurred in calcinations for each sample. For instance, the γ-Al2O3 obtained at 500 °C had the specific surface area (208.56 m2/g) with an average pore diameter of 6.0 nm. With the further increase of the calcination temperature, the nanofibers became shorter and coarsening, which resulted in the decrease of the specific surface area. It is worthwhile to notice that the BET surface areas (40.97 m2/g) and the pore volume (0.27 cm3/g) of the fibrous structures obtained after 1200 °C calcination are substantially higher than that of the non-fibrous alumina because of the morphology maintenance.

  • 1.

    Stumpf, HC, Russell, AS, Newsome, JW, Tucker, CM. 1950. Thermal transformations of aluminas and alumina hydrates. Ind Eng Chem. 42:13981403 .

  • 2.

    Ruan, HD, Frost, RL, Kloprogge, JT. 2001. Comparison of Raman spectra in characterizing gibbsite, bayerite, diaspore, and boehmite. J Raman Spectrosc. 32:745750 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Martínez, A, Prieto, G, Rollán, J. 2009. Nanofibrous γ-Al2O3 as support for Co-based Fischer-Tropsch catalysts: pondering the relevance of diffusional and dispersion effects on catalytic performance. J Catal. 263:292305 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Maity, SK, Flores, L, Ancheyta, J, Fukuyama, H. 2009. Carbon-modified alumina and alumina-carbon-supported hydrotreating catalysts. Ind Eng Chem Res. 48:11901195 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Ryan, MR, John, RC, Kim, WG, John, CC, Carsten, S. 2011. Structural changes of γ-Al2O3-supported catalysts in hot liquid water. ACS Catal. 1:552561.

    • Search Google Scholar
    • Export Citation
  • 6.

    Le Page JF . Applied heterogeneous catalysis-design, manufacture, use of solide catalysts, Paris: Editions Technip; 1987.

  • 7.

    Raybaud, P, Costa, D, Valero, MC, Arrouvel, C, Digne, M, Sautet, P, Houlhoat, H. 2008. First principles surface thermodynamics of industrial supported catalysts in working conditions. J Phys: Condens Matter. 20:6474 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Charles, M, Eswar, A, Melaz, TF, Denis, U. 2010. Asphaltene diffusion and adsorption in modified NiMo alumina catalysts followed by ultraviolet (UV) spectroscopy. Energy Fuels. 24:42904300 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Ying, ZS, Gevert, B, Otterstedt, JE, Sterte, J. 1997. Hydrodemetallisation of residual oil with catalysts using fibrillar alumina as carrier material. Applied Catalysis A. 153:6982 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Kurikka, VP, Shafi, M, Ulman, A, Lai, J, Yang, NL, Cui, MH. 2003. A new route to alumoxane gel: a versatile precursor to γ-alumina and alumina-based ceramic oxides. J Am Chem Soc. 125:40104011 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Trombetta, M, Busca, G, Rossini, S, Picolli, V, Cornaro, U, Guercio, A, Catani, R, Willey, RJ. 1998. FT-IR studies on light olefin skeletal isomerization catalysis: III. Surface acidity and activity of amorphous and crystalline catalysts belonging to the SiO2–Al2O3 system. J Catal. 179:581596 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Wildschut, J, Mahfud, FH, Venderbosch, RH, Heeres, HJ. 2009. Hydrotreatment of fast pyrolysis oil using heterogeneous noble-metal catalysts. Ind Eng Chem Res. 48:1032410334 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Hwang, J, Min, BD, Lee, JS. 2004. Al2O3 nanotubes fabricated by wet etching of ZnO/Al2O3 core/shell nanofibers. Adv Mater. 16:422425 .

  • 14.

    Ozao, R, Yoshida, H, Inada, T. 2002. Morphological and structural change of nano-pored alumina membrane above 1200 K. J Therm Anal Calorim. 69:925931 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Wang, YW, Zhang, LD, Meng, GW, Peng, XS, Jin, YX, Zhang, J. 2002. Fabrication of ordered ferromagnetic-nonmagnetic alloy nanowire arrays and their magnetic property dependence on annealing temperature. J Phys Chem B. 106:25022507 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Zhao, Y, Frost, RL, Vágvölgyi, V, Waclawik, ER, Kristóf, J, Horváth, E. 2008. XRD, TEM and thermal analysis of yttrium doped boehmite nanofibres and nanosheets. J Therm Anal Calorim. 94:219226 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Zhu, HY, Riches, JD, Barry, JC. 2002. γ-Alumina nanofibers prepared from aluminum hydrate with poly(ethylene oxide) surfactant. Chem Mater. 14:20862093 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Zhao, Y, Frost, RL, Martens, WN, Zhu, HY. 2007. XRD, TEM and thermal analysis of Fe doped boehmite nanofibres and nanosheets. J Therm Anal Calorim. 90:755760 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Yu, ZQ, Du, YW. 1998. Preparation of nanometer-sized alumina whiskers. J Mater Res. 13:30173018 .

  • 20.

    Frost, RL, Kloprogge, JT, Russell, SC, Szetu, J. 1999. Dehydroxylation of aluminum (oxo)hydroxides using infrared emission spectroscopy. Part II: boehmite. Appl Spectrosc. 53:572582 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Palmero, P, Bonelli, B, Lomello, F, Garrone, E, Montanaro, L. 2009. Role of the dispersion route on the phase transformation of a nano-crystalline transition alumina. J Therm Anal Calorim. 97:223229 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Palmer, SJ, Frost, RL. 2010. Thermal decomposition of Bayer precipitates formed at varying temperatures. J Therm Anal Calorim. 100:2732 .

  • 23.

    Palmero, P, Lombardi, M. 2009. Sintering of a nano-crystalline metastable alumina Influence of the firing parameters on the phase development and microstructural evolution. J Therm Anal Calorim. 97:191196 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Balek, V, ubrt, J, Rouquerol, J, Llewellyn, P, Zeleòák, V, Bountsewa, IM, Beckman, IN, Györyová, K. 2003. Emanation thermal analysis study of synthetic gibbsite. J Therm Anal Calorim. 71:773782 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Koga, N. 2005. A comparative study of the effects of decomposition rate control and mechanical grinding on the thermal decomposition of aluminum hydroxide. J Therm Anal Calorim. 81:595601 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Zhao, Y, Frost, RL, Martens, WN, Zhu, HY. 2007. Growth and surface properties of boehmite nanofibers and nanotubes at low temperatures using a hyrothermal synthesis route. Langmuir. 23:98509859 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Hao, LC, Yu, WD. 2010. Evaluation of thermal protective performance of basalt fiber nonwoven fabrics. J Therm Anal Calorim. 100:551555 .

  • 28.

    Zhu, HY, Gao, XP, Song, DY, Bai, YQ, Ringer, SP, Gao, Z, Xi, YX, Martens, WN, Riches, JD, Frost, RL. 2004. Growth of boehmite nanofibers by assembling nanoparticles with surfactant micelles. J Phys Chem B. 108:42454247 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Maclver, DS, Tobin, HH, Barth, RT. 1963. Catalytic aluminas I. Surface chemistry of eta and gamma alumina. J Catal. 2:485497 .

  • 30.

    Maclver, DS, Wilmot, WH, Bridges, JM. 1964. Catalytic aluminas: II. Catalytic properties of eta and gamma alumina. J Catal. 3:502511 .

  • 31.

    Gianluca, P, Craig, EB, Andrew, LR, Robert, DH, Kartsen, W, Andrew, JS, Brett, AH, John, VH. 2004. Boehmite derived γ-alumina system. 1. Structural evolution with temperature, with the identification and structural determination of a new transition phase, γ-alumina. Chem Mater. 16:220236 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Kloprogge, JT, Ruan, HD, Frost, RL. 2002. Thermal decomposition of bauxite minerals: infrared emission spectroscopy of gibbsite, boehmite and diaspore. J Mater Sci. 37:11211129 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Gonçalves, MLA, Barreto, JRC, Cerqueira, WV, Teixeira, AMRF. 2009. Effect of zeolite, kaolin and alumina during cracking of heavy petroleum residue evaluated by thermogravimetry. J Therm Anal Calorim. 97:515519 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Barrett, EP, Joyner, LG, Halenda, PH. 1951. The determination of pore volume and area distributions in porous substances: I. Computations from nitrogen isotherms. J Am Chem Soc. 73:373380 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Pierre, AC, Elaloui, E, Pajonk, GM. 1998. Comparison of the structure and porous texture of alumina gels synthesized by different methods. Langmuir. 14:6673 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Zhang, XX, Ge, YL, Hannula, SP, Levanen, E, Mantyla, T. 2008. Nanocrystalline a-alumina with novel morphology at 1000 °C. J Mater Chem. 18:24232425 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Zhang, XX, Honkanen, M, Levanen, E, Mantyla, T. 2008. Transition alumina nanoparticles and nanorods from boehmite nanoflakes. J Cryst Growth. 310:36743679 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 2 0 0
Jul 2021 5 0 0
Aug 2021 2 0 0
Sep 2021 1 0 0
Oct 2021 4 0 0
Nov 2021 1 0 0
Dec 2021 0 0 0