View More View Less
  • 1 School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
  • | 2 School of Materials Science and Engineering, Guangxi University, Nanning 530004, China
Restricted access

Abstract

MgFe2(C2O4)3·6H2O was synthesized by solid-state reaction at low heat using MgSO4·7H2O, FeSO4·7H2O, and Na2C2O4 as raw materials. The spinel MgFe2O4 was obtained via calcining MgFe2(C2O4)3·6H2O above 500 °C in air. The MgFe2(C2O4)3·6H2O and its calcined products were characterized by thermogravimetry and differential scanning calorimetry (TG/DSC), Fourier transform FT-IR, X-ray powder diffraction (XRD), and vibrating sample magnetometer (VSM). The result showed that MgFe2O4 obtained at 800 °C had a specific saturation magnetization of 40.4 emu g−1. The thermal process of MgFe2(C2O4)3·6H2O experienced three steps, which involves the dehydration of the six waters of crystallization at first, and then decomposition of MgFe2(C2O4)3 into amorphous MgFe2O4 in air, and at last crystallization of MgFe2O4. Based on Flynn–Wall–Ozawa equation, the average values of the activation energies associated with the thermal decomposition of MgFe2(C2O4)3·6H2O were determined to be 148.45 ± 25.50 and 184.08 ± 7.64 kJ mol−1 for the first and second decomposition steps, respectively. Dehydration of the six waters of MgFe2(C2O4)3·6H2O is multi-step reaction mechanisms. Decomposition of MgFe2(C2O4)3 into MgFe2O4 could be simple reaction mechanisms, kinetic model that can better describe the thermal decomposition of MgFe2(C2O4)3 is the F3/4 model, and the corresponding function is g(α) = 1 − (1 − α)1/4.

  • 1.

    Pileni, MP. 2001. Magnetic fluids: fabrication, magnetic properties, and organization of nanocrystals. Adv Funct Mater. 5:323336 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Pankhurst, QA, Connolly, J, Jones, SK, Dobson, J. 2003. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys. 36:167 .

  • 3.

    Sasaki, T, Ohara, S, Naka, T, Vejpravova, J, Sechovsky, V, Umetsu, M, Takami, S, Jeyadevan, B, Adschiri, T. 2010. Continuous synthesis of fine MgFe2O4 nanoparticles by supercritical hydrothermal reaction. J Supercrit Fluids. 53:9294 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Song, Q, Zhang, ZJ. 2004. Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J Am Chem Soc. 126:61646168 .

  • 5.

    Pankhurst, QA, Pollard, RJ. 1993. Fine-particle magnetic oxides. J Phys Condens Matter. 5:84878508 .

  • 6.

    Sivakumar, N, Gnanakan, SRP, Karthikeyan, K, Amaresh, S, Yoon, WS, Park, GJ, Lee, YS. 2011. Nanostructured MgFe2O4 as anode materials for lithium-ion batteries. J Alloys Compd. 509:70387041 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Rezlescu, N, Iftimie, N, Rezlescu, E, Doroftei, C, Popa, PD. 2006. Semiconducting gas sensor for acetone based on the fine grained nickel ferrite. Sens Actuators B. 114:427432 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Willey, RJ, Noirclerc, P, Busca, G. 1993. Preparation and characterization of magnesium chromite and magnesium ferrite aerogels. Chem Eng Commun. 123:116 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Bergmann, I, Šepelák, V, Becker, KD. 2006. Preparation of nanoscale MgFe2O4 via non-conventional mechanochemical. Solid State Ionics. 177:18651868 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Sivakumara, N, Narayanasamy, A, Greneche, JM, Murugaraj, R, Leed, YS. 2010. Electrical and magnetic behaviour of nanostructured MgFe2O4 spinel ferrite. J Alloys Compd. 504:395402 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Chen, Q, Rondinone, AJ, Chakoumakos, BC, Zhang, ZJ. 1999. Synthesis of superparamagnetic MgFe2O4 nanoparticles by coprecipitation. J Magn Magn Mater. 194:17 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Hankare, PP, Jadhav, SD, Sankpal, UB, Patil, RP, Sasikala, R, Mulla, IS. 2009. Gas sensing properties of magnesium ferrite prepared by co-precipitation method. J Alloys Compd. 488:270272 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Pradeep, A, Priyadharsini, P, Chandrasekaran, G. 2008. Sol–gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study. J Magn Magn Mater. 320:27742779 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Huang, YJ, Tang, Y, Wang, J, Chen, QW. 2006. Synthesis of MgFe2O4 nanocrystallites under mild conditions. Mater Chem Phys. 97:394397 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Chandradass, J, Kim, KH. 2011. Solvent effects in the synthesis of MgFe2O4 nanopowders by reverse micelle processing. J Alloys Compd. 509:5962 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Verma, S, Joy, PA, Khollam, YB, Potdar, HS, Deshpande, SB. 2004. Synthesis of nanosized MgFe2O4 powders by microwave hydrothermal method. Mater Lett. 58:10921095 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Wu, WW, Li, SS, Liao, S, Xiang, F, Wu, XH. 2010. Preparation of new sunscreen materials Ce1−xZnxO2−x via solid-state reaction at room temperature and study on their properties. Rare Metals. 29:149153 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Flynn, JH, Wall, LA. 1966. A quick direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 4:323328 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Ozawa, TA. 1965. New method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 38:18811886 .

  • 20.

    Wu XH , Wu WW, Cui XM, Liao S. Preparation of nanocrystalline BiFeO3 via a simple and novel method and its kinetics of crystallization, J Therm Anal Calorim. 2011. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Wu, XH, Wu, WW, Liu, C, Li, SS, Liao, S, Cai, JC. 2010. Synthesis of layered sodium manganese phosphate via low-heating solid-state reaction and its properties. Chin J Chem. 28:23942398 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Wu XH , Wu WW, Cui XM, Liao S. Selective self-assembly synthesis of MnV2O6·4H2O with controlled morphologies and study on its thermal decomposition. J Therm Anal Calorim. 2011. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Elizabeth, A, Joseph, C, Paul, I, Ittyachen, MA, Mathew, KT, Lonappan, A, Jacob, J. 2005. Microwave studies on double rare earth oxalate crystals. Mater Sci Eng A. 391:4350 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Donia, AM. 1997. Synthesis, identification and thermal analysis of coprecipitates of silver-(cobalt, nickel, copper and zinc) oxalate. Polyhedron. 16:30133031 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Goel, SP, Mehrotra, PN. 1985. IR and thermal studies on lithium oxomolybdenum (VI) oxalate. J Thermal Anal. 30:145151 .

  • 26.

    Jiang, CT, Liu, RJ, Shen, XQ, Zhu, L, Song, FZ. 2011. Ni0.5Zn0.5Fe2O4 nanoparticles and their magnetic properties and adsorption of bovine serum albumin. Powder Technol. 211:9094 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Vlaev, L, Nedelchev, N, Gyurova, K, Zagorcheva, M. 2008. A comparative study of \-isothermal kinetics of decomposition of calcium oxalate monohydrate. J Anal Appl Pyrolysis. 81:253262 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Genieva, SD, Vlaev, LT, Atanassov, AN. 2010. Study of the thermooxidative degradation kinetics of poly(tetrafluoroethene) using iso-conversional calculation procedure. J Therm Anal Calorim. 99:551561 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Wu, XH, Wu, WW, Li, SS, Cui, XM, Liao, S. 2011. Kinetics and thermodynamics of thermal decomposition of NH4NiPO4·6H2O. J Therm Anal Calorim. 103:805812 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Boonchom, B, Danvirutai, C. 2009. Kinetics and thermodynamics of thermal decomposition of synthetic AlPO4·2H2O. J Therm Anal Calorim. 98:771777 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 0 0 0
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 0 0 0
Sep 2021 0 0 0
Oct 2021 0 0 0