View More View Less
  • 1 Department of Chemistry, Faculty of Arts and Science, Kirklareli University, 39300, Kirklareli, Turkey
  • 2 Advanced Technology Research & Application Center, Mersin University, Yenisehir, 33343, Mersin, Turkey
  • 3 Department of Chemistry, Faculty of Arts and Science, Mersin University, 33343, Mersin, Turkey
Restricted access

Abstract

Thermal properties of [cis-(dithiocyanato)(4,5-diazafluoren-9-one)(4,4′-dicarboxy-2,2′-bipyridyl)ruthenium(II)], [Ru(L1)(L2)(NCS)2] (where the ligands L1 = 4,5-diazafluoren-9-one, L2 = 4,4′-dicarboxy-2,2′-bipyridyl) have been investigated by DTA/TG/DTG measurements under inert atmosphere in the temperature range of 30–1155 °C. The mass spectroscopy technique has been used to identify the products during pyrolytic decomposition. The pyrolytic final products have been analyzed by X-ray powder diffraction technique. A decomposition mechanism has been also suggested for the cis-[Ru(L1)(L2)(NCS)2] complex based on the results of thermogravimetrical and mass analysis. The values of the activation energy, E∗ have been obtained by using model-free Kissenger–Akahira–Sunose and Flyn–Wall–Ozawa non-isothermal methods for all decomposition stages. Thirteen kinetic model equations have been tested for selecting the best reaction models. The best model equations have been determined as A2, A3, D1, and D2 which correspond to nucleation and growth mechanism for A2 and A3 and diffusion mechanism for D1 and D2. The optimized average values of E∗ are 31.35, 58.48, 120.85, and 120.56 kJ mol−1 calculated by using the best model equations for four decomposition stages, respectively. Also, the average Arrhenius factor, A, has been obtained as 2.21, 2.61, 2.52, and 2.21 kJ mol−1 using the best model equation for four decomposition stages, respectively. The ΔH∗, ΔS∗, and ΔG∗ functions have been calculated using the optimized values.

  • 1.

    Nazeeruddin, MK, Humphry-Baker, R, Liska, P, Grätzel, M. 2003. Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. J Phys Chem B. 107:89818987 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Gratezel, M. 2004. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photochem Photobiol A. 164:314 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Ocakoglu, K, Zafer, C, Cetinkaya, B, Icli, S. 2007. Synthesis, characterization, electrochemical and spectroscopic studies of two new heteroleptic Ru(II) polypyridyl complexes. Dyes Pigment. 75:385394 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Ocakoglu, K, Yildirim, Y, Lambrecht, FY, Ocal, J, Icli, S. 2008. Biological investigation of 131I-labeled new water soluble Ru(II) polypyridyl complex. Appl Radiat Isot. 66:115121 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Ocakoglu, K, Yakuphanoglu, F, Durrant, JR, Icli, S. 2008. The charge transport and transient absorption properties of a dye-sensitized solar cell. Sol Energy Mater Sol C. 92:10471053 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Xie, PH, Hou, YJ, Zhang, BW, Cao, Y, Wu, F, Tian, WJ, Shen, JC. 1999. Spectroscopic and electrochemical properties of ruthenium(II) polypyridyl complexes. J Chem Soc Dalton Trans. 23:42174221 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Nazeeruddin, MK, Zakeeruddin, SM, Humphry-Baker, R, Kaden, TA, Gratezel, M. 2000. Determination of pKa values of 4-phosphonato-2,20:60,200-terpyridine and its ruthenium(II)-based photosensitizer by NMR, potentiometric, and spectrophotometric methods. Inorg Chem. 39:45424547 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Rice, CR, Ward, MD, Nazeeruddin, MK, Gratezel, M. 2000. Catechol as an efficient anchoring group for attachment of ruthenium-polypyridine photosensitizers to solar cells based on nanocrystalline TiO2 films. New J Chem. 24:651652 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Sahin, C, Tozlu, C, Ocakoglu, K, Zafer, C, Varlikli, C, Icli, S. 2008. Synthesis of an amphiphilic ruthenium complex with swallow-tail bipyridyl ligand and its application in nc-DSC. Inorg Chim Acta. 361:671676 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Amirnasr, M, Nazeeruddin, MK, Grätzel, M. 2000. Thermal stability of cis-dithiocyanato(2,20-bipyridyl4,40dicarboxylate)ruthenium(II) photosensitizer in the free form and on nanocrystalline TiO2 films. Thermochim Acta. 348:105114 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Rau, S, Walther, D, Vos, JG. 2007. Inspired by nature: light driven organometallic catalysis by heterooligonuclear Ru(II) complexes. Dalton Trans. 9:915919 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Takeda, H, Koike, K, Inoue, H, Ishitani, O. 2008. Development of an efficient photocatalytic system for CO2 reduction using rhenium(I) complexes based on mechanistic studies. J Am Chem Soc. 130:20232031 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Hayashi, Y, Kita, S, Brunschwig, BS, Fujita, E. 2003. Involvement of a binuclear species with the Re–C(O)O–Re moiety in CO2 reduction catalyzed by tricarbonyl rhenium(I) complexes with diimine ligands: strikingly slow formation of the Re–Re and Re–C(O)O–Re species from Re(dmb)(CO)3S (dmb = 4,4′-dimethyl-2,2′-bipyridine, S = Solvent. J Am Chem Soc. 125:1197611987 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Ocakoglu, K, Emen, FM. 2011. Thermal analysis of cis-(dithiocyanato) (1,10-phenanthroline-5,6-dione)(4,40-dicarboxy-2,20-bipyridyl)ruthenium(II)photosensitizer. J Therm Anal Calorim. 104 3 10171022 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Cilgi, GK, Cetisli, H. 2009. Thermal decomposition kinetics of aluminum sulfate hydrate. J Therm Anal Calorim. 98:855861 .

  • 16.

    Kücük, F, Yildiz, K. 2006. The decomposition kinetics of mechanically activated alunite ore in air atmosphere by thermogravimetry. Thermochim Acta. 448:107110 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Ozawa, T. 1965. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 38:18811886 .

  • 18.

    Flynn, JH, Wall, LA. 1966. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand. 70A:487523 .

  • 19.

    Kissinger, HE. 1956. Reaction of peak temperature with heating rate in different thermal analysis. J Res Nat Bur Stand. 57:217221 .

  • 20.

    Kissinger, HE. 1957. Reaction kinetics in differential thermal analysis. Anal Chem. 29:17021706 .

  • 21.

    Akahira, T, Sunose, T. 1971. Joint convention of four electrical institutes. Res Rep Chiba Inst Technol. 16:2231.

  • 22.

    Simon, P. 2004. Isoconversional methods; fundamentals, meaning and application. J Therm Anal Calorim. 76:123132 .

  • 23.

    Koç, S, Toplan, N, Yildiz, K, Toplan, H. 2011. Effects of mechanical activation on the non-isothermal kinetics of mullite formation from kaolinite. J Therm Anal Calorim. 103:791796 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Wu, W, Wu, X, Lai, S, Liao, S. 2011. Non-isothermal kinetics of thermal decomposition of NH4ZrH(PO4)2·H2O. J Therm Anal Calorim. 104:685691 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Sovizi, MR, Anbaz, K. 2010. Kinetic investigation on thermal decomposition of organophosphorous compounds. J Therm Anal Calorim. 99:593598 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Stefano, V, Romolo, DR, Carla, F. 2009. Kinetic study of decomposition for Co(II)- and Ni(II)-1,10-phenanthroline complexes intercalated in c-zirconium phosphate. J Therm Anal Calorim. 97:805810 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Muraleedharan, K, Kanan, M, Ganga, DT. 2011. Thermal decomposition kinetics of potassium iodate. J Therm Anal Calorim. 103:943955 .

  • 28.

    Uemura, K, Kitagawa, S, Saito, K, Fukui, K, Matsumoto, K. 2005. Thermodynamic aspect of reversible structural conversion induced by guest adsorption/desorption based on infinite Co(NCS)2Py4 (Py = pyridine) system. J Therm Anal Calorim. 81:529532 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Alvarez, V, Rodriguez, E, Vazquez, A. 2006. Thermal degradation and decomposition of jute/vinylester composites. J Therm Anal Calorim. 85:383389 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Guinesi, LS, Ribeiro, CA, Crespi, MS, Santos, AF, Capela, MV. 2006. Titanium(IV)-EDTA complex. J Therm Anal Calorim. 85:301307 .

  • 31.

    Jun, Z, Shuangjun, C, Jing, J, Xuming, S, Xiaolin, W, Zhongzi, X. 2010. Non-isothermal melt crystallization kinetics for ethylene–acrylic acid copolymer in diluents via thermally induced phase separation. J Therm Anal Calorim. 101:243254 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Banjong, B. 2009. Kinetic and thermodynamic studies of MgHPO4·3H2O by non-isothermal decomposition data. J Therm Anal Calorim. 98:863871 .

  • 33.

    Huang, JW, Chang, CC, Kang, CC, Yeh, MY. 2008. Crystallization kinetics and nucleation parameters of Nylon6 and poly(ethylene-co-glycidyl methacrylate) blend. Thermochim Acta. 468:6674 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Vyazovkin, S, Burnham, AK, Criado, JM, Maqueda, LAP, Popescu, C, Sbirrazzuoli, N. 2011. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 520:119 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Gabal, MA. 2004. Non-isothermal studies for the decomposition course of CdC2O4–ZnC2O4 mixture in air. Thermochim Acta. 412:5562 .

  • 36.

    Budrugeac, P, Segal, E. 2005. On the use of Diefallah's composite integralmethod for the non-isothermal kinetic analysis of heterogenous solid-gas reactions. J Therm Anal Calorim. 82:677680 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Brown, ME, Maciejewski, M, Vyazovkin, S, Nomen, R, Sempere, J, Burnham, A, Opfermann, J, Strey, R, Anderson, HL, Kemmler, A, Keuleers, R, Janssens, J, Desseyn, HO, Li, CR, Tang, TB, Roduit, B, Malek, J, Mitsuhashi, T. 2000. Computational aspects of kinetic analysis part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta. 355:125143 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Vyazovkin, S, Wight, CA. 1997. Kinetics in solids. Annu Rev Phys Chem. 48:125149 .

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Nov 2020 2 0 0
Dec 2020 0 0 0
Jan 2021 0 0 0
Feb 2021 0 0 0
Mar 2021 0 0 0
Apr 2021 0 0 0
May 2021 0 0 0