View More View Less
  • 1 Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior s/n CU, Del. Coyoacán, 04510, México, DF, Mexico
Restricted access

Abstract

CO2 capture and storage are the most important issues to be tackled in the near future. For the last few years, different lithium ceramics have been proposed as possible CO2 captors. In this article, the CO2 chemisorption process on α-LiBO2, which had not been previously investigated, was studied. α-LiBO2 was synthesized and characterized by XRD, SEM and N2 adsorption. Its CO2 reactivity was evaluated by dynamic and isothermal thermogravimetric experiments. Results show that α-LiBO2 is able to react with CO2. Additionally, there is a phase transformation from α-LiBO2 to γ-LiBO2 during the CO2 absorption. Although the CO2 absorption was not considerably high, the results showed that lithium ceramics, containing boron, absorbed CO2.

  • 1.

    Zhao, HY, Cao, Y, Lineberry, Q, Pan, WP. 2011. Evaluation of CO2 adsorption capacity of solid sorbents. J Therm Anal Calor. 106:199205 .

  • 2.

    Barbosa MN , Araujo AS, Galăo LPFC, Silva EFB, Santos AGD, Luz-Jr. GE, Fernandes-Jr. VJ. Carbon dioxide adsorption over DIPA functionalized MCM-41 and SBA-15 molecular sieves. J Therm Anal Calor (2011). doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Nakagawa, K, Ohashi, T. 1998. A novel method of CO2 capture from high temperature gases. J Electrochem Soc. 145:13441346 .

  • 4.

    Choi, KH, Korai, Y, Mochida, I. 2003. Preparation of CO2 absorbent by spray pyrolysis. Chem Lett. 32:924925 .

  • 5.

    Xiong, R, Ida, JI, Lin, YS. 2003. Kinetics of carbon dioxide sorption on potassium-doped lithium zirconate. Chem Eng Sci. 58:43774385 .

  • 6.

    Veliz-Enriquez, MY, Gonzalez, G, Pfeiffer, H. 2007. Synthesis and CO2 capture evaluation of Li2−xKxZrO3 solid solutions and crystal structure of a new lithium-potassium zirconate phase. J Solid State Chem. 180:24852492 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Pfeiffer, H, Vazquez, C, Lara, VH, Bosch, P. 2007. Thermal behavior and CO2 absorption of Li2−xNaxZrO3 solid solutions. Chem Mater. 419:922926 .

  • 8.

    Ida, JI, Xiong, R, Lin, YS. 2004. Synthesis and CO2 sorption properties of pure and modified lithium zirconate. Sep Purif Technol. 36:4151 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Mosqueda, H, Vazquez, C, Bosch, P, Pfeiffer, H. 2006. Chemical sorption of carbon dioxide (CO2) on lithium oxide (Li2O). Chem Mater. 18:23072310 .

  • 10.

    Pannocchia, G, Puccini, M, Seggiani, M, Vitolo, S. 2007. Experimental and modeling studies on high-temperature capture of CO2 using lithium zirconate based sorbents. Ind Eng Chem Res. 46:66966706 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Pfeiffer, H, Lima, E, Bosch, P. 2006. Lithium-sodium metazirconate solid solutions, Li2−xNaxZrO3 (0 ≤ x ≤ 2): A hierarchical architecture. Chem Mater. 18:26422647 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Mejía-Trejo, VL, Fregoso-Israel, E, Pfeiffer, H. 2008. Textural, structural and CO2 chemisorption effects produced on the lithium orthosilicate by its doping with sodium (Li4−xNaxSiO4). Chem Mater. 20:71717176 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Kodama, M, Kojima, S. 2002. Anharmonicity and fragility in lithium borate glasses. J Therm Anal Calor. 69:961970 .

  • 14.

    Dang-Huy, N, Badilescu, S, Djaoued, Y, Girouard, F, Bader, G, Ashrit, PV, Vo-Tan, T. 1996. Preparation and characterization of lithium metaborate thin films obtained by a sol-gel method. Thin Solid Films. 286:141145 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Lei, L, He, D, He, K, Qin, J, Wang, S. 2009. Pressure-induced coordination changes in LiBO2. J Solid State Chem. 182:30413048 .

  • 16.

    Zachariasen, WH. 1964. The crystal structure of lithium metaborate. Acta Crystal. 17:749751 .

  • 17.

    Palacios-Romero, L, Lima, E, Peiffer, H. 2008. Structural analysis and CO2 chemisorption study on non-stoichiometric lithium cuprates (Li2+xCuO2+x/2). J Phys Chem A. 113:193198 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Sastry, BS, Hummel, FA. 1959. Studies in lithium oxide systems: V, Li2O–Li2O B2O3. J Am Ceram Soc. 42:216218 .

  • 19.

    Choi, S, Drese, JH, Jones, CW. 2009. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem. 2:796854 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Alcerreca-Corte, I, Fregoso-Israel, E, Pfeiffer, H. 2008. CO2 absorption on Na2ZrO3: a kinetic analysis of the chemisorption and diffusion processes. J Phys Chem C. 112:65206525 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Liang, J, Chen, X, Min, J, Chai, Z, Zhao, S, Cheng, X, Zhang, Y, Rao, G. 1995. Crystallization mechanism of dehydrated amorphous LiBO2. Phys Rev B. 51:756762 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Kamitsos, EI, Karakassides, MA, Chryssikos, GD. 1987. Vibrational spectra of magnesium-sodium-borate glasses. 2. Raman and mid-infrared investigation of the network structure. J Phys Chem. 91:10731079 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Chryssikos, GD, Kamitsos, EI, Patsis, AP, Bitsis, MS, Karakassides, MA. 1990. The devitrification of lithium metaborate: polymorphism and glass formation. J Non-Cryst Solids. 126:4251 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Almeida, AFL, Vasconcelos, IF, Valente, MA, Sombra, ASB. 2002. The optical and 57Fe Mössbauer spectra of lithium diborate (Li2B4O7) in borophosphate glass-ceramics. Physica B. 322:276288 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Zhang, DR, Liu, HL, Jin, RH, Zhang, NZ, Liu, YX, Kang, YS. 2007. Synthesis and characterization of nanocrystalline LiTiO2 using a one-step hydrothermal method. J Ind Eng Chem. 13:9296.

    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)