View More View Less
  • 1 Department of Physics, Jamia Millia Islamia, New Delhi 110 025, India
  • 2 Department of Applied Physics, Centre of Excellence in Materials Science (Nanomaterials), Aligarh Muslim University, Aligarh, Uttar Pradesh, 202 002, India
  • 3 King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 114 51, Saudi Arabia
Restricted access

Abstract

In the present study samples of Se100 − xSx has been prepared by conventional melt-quenching technique in the composition range 5 ≤ x ≤ 20 (at.%). The crystallization process in glassy system was investigated under non-isothermal condition using differential scanning calorimetry (DSC) at 5, 10, 15, and 20 °C/min heating rates (φ). The DSC traces have been analyzed in terms of activation energy (ΔEc) and Avrami exponent (n) using different models viz. the Starink, Flynn–Wall–Ozawa, the Friedman–Ozawa, Kissinger–Akahira–Sunose equations. The composition dependence on the glass transition temperature (Tg), the crystallization temperature (Tc), and the peak temperatures (Tp) of the samples were also determined. The analysis shows that the incorporation of sulfur content has a strong influence on the crystallization mechanism for the Se–S glassy system.

  • 1.

    Starink, MJ. 2004. The analysis of Al-based alloys by calorimetry: quantitative analysis of reactions and reaction kinetics. Int Mater Rev. 49:191226 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Ozawa, T. 2000. Temperature control modes in thermal analysis. Pure Appl Chem. 72:20832099 .

  • 3.

    Ahamad, MN, Vaish, R, Varma, KBR. 2011. Calorimetric studies on 2TeO2–V2O5 glasses. J Therm Anal Calorim. 105:239243 .

  • 4.

    Starink, MJ. 2003. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 404:163176 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Liu, L, Zhi, FW, Chen, L. 2002. A kinetic study of the non-isothermal crystallization of a Zr-based bulk metallic glass. Chin Phys Lett. 19:14831486 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Vazquez J , Barreda DGG, Lopez-Alemany PL, Villares P, Jimenez-Garay R. Crystallization of Ge0.08Sb0.15Se0.77 glass studied by DSC. J Noncryst Solids. 2004; 345 and 346:142-7.

    • Search Google Scholar
    • Export Citation
  • 7.

    Wang, J, Liu, YJ, Tang, CY, Liu, LB, Zhou, HY, Jin, ZP. 2011. Thermodynamic description of the Au–Ag–Ge ternary system. Thermochim Acta. 512:240246 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Surinach, S, Baro, MD, Clavaguera-Mora, MT, Clavaguera, N. 1983. Kinetic study of isothermal and continuous heating crystallization in GeSe2–GeTe–Sb2Te3 alloy glasses. J Noncryst Solids. 58:209217 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Kotkata, MF, El-Fouly, H, El-Behay, AZ, El-Wahab, LA. 1983. Transport studies of S–Se amorphous semiconductors. Mater Sci Eng. 60:163171 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Mahmoud, EA. 1990. Crystallization kinetics of amorphous S20Se80. Therm Anal Calorim. 36:14811486 .

  • 11.

    Kotkata, MF, Ayad, FM, El-Mously, MK. 1979. Photo-effect on crystallization kinetics of amorphous selenium doped with sulphur. J Noncryst Solids. 33:1322 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    El-Shazly, O, Ramadan, T, El-Anany, N, Mataweh, HA, El-Wahidy, E. 2001. Calorimetric studies of chalcogenide glasses in the system Se–S. Eur Phys J Appl Phys. 13:161165 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Dimitrov, D, Tzocheva, D, Kovacheva, D. 1998. Calorimetric study of amorphous Sb–Se thin films. Thin Solids Films. 323:7984 .

  • 14.

    Mahadevan, S, Giridhar, A, Singh, AK. 1986. Calorimetric measurements on As–Sb–Se glasses. J Noncryst Solids. 88:1134 .

  • 15.

    Kissinger, HE. 1957. Reaction kinetics in differential thermal analysis. Anal Chem. 29:17021706 .

  • 16.

    Kujirai, T, Akahira, T. 1925. Effect of temperature on the deterioration of fibrous insulation materials. Sci Pap Inst Phys Chem Res. 2:223252.

    • Search Google Scholar
    • Export Citation
  • 17.

    Akahira, T, Sunose, T. 1971. Joint convention of four electrical institutes. Res Rep Chiba Inst Technol. 16:2231.

  • 18.

    Starink, MJ. 1996. A new method for the derivation of activation energies from experiments performed at constant heating rate. Thermochim Acta. 288:97104 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Kissinger, HE. 1956. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 57:217252 .

  • 20.

    Ozawa, T. 1992. Estimation of activation energy by isoconversion methods. Thermochim Acta. 203:159165 .

  • 21.

    Ozawa, T. 1965. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 38:18811886 .

  • 22.

    Flynn, JH, Wall, LA. 1966. A quick direct method for the determination of activation energy from thermogravimetric data. J Polym Sci. B4:323327.

    • Search Google Scholar
    • Export Citation
  • 23.

    Friedman, HL. 1964. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. J Polym Sci. C6:183195.

  • 24.

    Ozawa, T. 1986. Applicability of Friedman plot. J Therm Anal Calorim. 31:547551 .

  • 25.

    Malek, J, Cernoskova, E, Svejka, R, Sestak, J G Van der Plaat 1996. Crystallization kinetics of Ge0.3Sb1.4S2.7 glass. Thermochim Acta. 280–281:353361 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Afify, N. 1992. Calorimetric study on the crystallization of a Se0.8Te0.2 chalcogenide glass. J Noncryst Solids. 142:247259 .

  • 27.

    Calventus, Y, Surinach, S, Baro, MD. 1996. Crystallization mechanisms of a Se85Te15 glassy alloy. J Phys Condens Matter. 8:927940 .

  • 28.

    Suzuki, T, Arai, Y, Ohishi, Y. 2007. Crystallization processes of Li2O–Ga2O3–SiO2–NiO system glasses. J Noncryst Solids. 353:3643 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Ozawa, T. 1970. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal Calorim. 2:301324 .

  • 30.

    Ozawa, T. 1971. Kinetics of non-isothermal crystallization. Polymer. 12:150158 .

  • 31.

    Vazquez, J, Wagner, C, Villares, P, Jimenez-Garay, R. 1998. Glass transition and crystallization kinetics in Sb0.18As0.34Se0.48 glassy alloy by using non-isothermal techniques. J Noncryst Solids. 235–237:548553 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Hsiao, A, McHenry, ME, Laughlin, DE, Kramer, MJ, Ashe, C, Ohkubo, T. 2002. The thermal, magnetic, and structural characterization of the crystallization kinetics of Fe88Zr7B4Cu1, an amorphous soft magnetic ribbon. IEEE Trans Magn. 38:30393044 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Nov 2020 0 2 1
Dec 2020 0 0 0
Jan 2021 0 0 0
Feb 2021 0 0 0
Mar 2021 0 0 0
Apr 2021 0 0 0
May 2021 0 0 0