View More View Less
  • 1 Faculty of Material and Manufacturing Technologies, Malek Ashtar University of Technology, P.O. Box 16765-3454, Tehran, Iran
  • 2 Islamic Azad University, Varamin Pishva Branch, Varamin, Iran
Restricted access

Abstract

Thermal stability and decomposition kinetics for two energetic materials, potassium nitroform (KNF) and 5-Nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO), were investigated to obtain information on their safety for handling, storage, and use. Differential scanning calorimetry (DSC) and simultaneous thermogravimetry-differential thermal analysis (TG-DTA) techniques have been used to study thermal behavior of these energetic compounds. The results of TG analysis revealed that the main thermal degradation for the KNF occurs during two temperature ranges of 270–330 and 360–430 °C. Meanwhile, NTO decomposes completely in temperature range of 250–300 °C. TG-DTA analysis of KNF indicates that this energetic compound dehydrated (at about 108 °C) before its decomposition. However, NTO is thermally stable until its decomposition. The decomposition kinetic of energetic materials was studied by non-isothermal DSC under various heating rates. Kinetic parameters such as activation energy and frequency factor for thermal decomposition of energetic compounds were obtained via the methods proposed by ASTM E696 and Starink. Also, thermodynamic parameters correspond to the activation of thermal decomposition and critical ignition temperatures of the compounds were obtained.

  • 1.

    Langlet, A, Latypov, NV, Goede, P, Bergman, J. 2004. Formation of nitroform in the nitration of gem-dinitro compounds. Propellants Explos Pyrotech. 29:344348 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Huang, Y, Gao, H, Twamley, B, Shreeve, JM. 2007. Synthesis and characterization of new energetic nitroformate salts. Eur J Inorg Chem. 2007:20252030 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Singh, G, Felix, SP. 2003. Studies on energetic compounds. Part 32: crystal structure, thermolysis and applications of NTO and its salts. J Mol Struct. 649:7381 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Brill, TB, Gongwer, PE, Williams, GK. 1994. Thermal decomposition of energetic materials: kinetic compensation effects in HMX, RDX, and NTO. J Phys Chem. 98:1224212247 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Pourmortazavi, SM, Hajimirsadeghi, SS, Hosseini, SG. 2006. Characterization of the aluminum/potassium chlorate mixtures by simultaneous thermogravimetry-differential thermal analysis. J Therm Anal Calorim. 84:557561 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Santos, AFO ID Basílio Jr FS de Souza Medeiros, AFD, Pinto, MF DP de Santana Macêdo, RO. 2008. Application of thermal analysis in study of binary mixtures with metformin. J Therm Anal Calorim. 93:361364 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Yoshino, S, Miyake, A. 2010. Thermal behavior and evolved gases analysis of 1,2,4-triazole-3-one derivatives. J Therm Anal Calorim. 100:247251 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Yi, J-H, Zhao, F-Q, Ren, Y-H, Xu, S-Y, Ma, H-X, Hu, R-Z. 2010. Thermal decomposition mechanism and quantum chemical investigation of hydrazine 3-nitro-1,2,4-triazol-5-one (HNTO). J Therm Anal Calorim. 100:623627 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Hosseini, SG, Pourmortazavi, SM, Hajimirsadeghi, SS. 2005. Thermal decomposition of pyrotechnic mixtures containing sucrose with either potassium chlorate or potassium perchlorate. Combust Flame. 141:322326 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Shteinberg A . Thermal analysis of high-temperature fast reactions in energetic materials. J Therm Anal Calorim. 2011. doi: .

  • 11.

    Li, Y, Cheng, Y. 2010. Investigation on the thermal stability of nitroguanidine by TG/DSC-MS-FTIR and multivariate non-linear regression. J Therm Anal Calorim. 100:949953 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Rothgery, EF, Audette, DE, Wedlich, RC, Csejka, DA. 1991. The study of the thermal decomposition of 3-nitro-1,2,4-triazol-5-one (NTO) by DSC, TGA-MS, and ARC. Thermochim Acta. 185:235243 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Sinditskii, VP, Smirnov, SP, Egorshev, VY. 2007. Thermal decomposition of NTO: an explanation of the high activation energy. Propellants Explos Pyrotech. 32:277287 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Kondrikov, BN, Smirnov, SP, Minakin, AV, Doherty, RM. 2004. Chemical kinetics of the thermal decomposition of NTO. Propellants Explos Pyrotech. 29:2733 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Long, GT, Brems, BA, Wight, CA. 2002. Thermal activation of the high explosive NTO: sublimation, decomposition, and autocatalysis. J Phys Chem B. 106:40224026 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Ostmark, H, Bergman, H, Aqvist, G. 1993. The chemistry of 3-nitro-1,2,4-triazol-5-one (NTO)—thermal decomposition. Thermochim Acta. 213:165175 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Botcher, TR, Beardall, DJ, Wight, CA, Fan, LM, Burkey, TJ. 1996. Thermal decomposition mechanism of NTO. J Phys Chem. 100:88028806 .

  • 18.

    Powala, D, Orzechowski, A, Florczak, B, Maranda, A, Nowaczewski, J. 2006. Less sensitive explosives—3-nitro-1,2,4-triazol-5-one (NTO). Przem Chem. 85:177181.

    • Search Google Scholar
    • Export Citation
  • 19.

    Turker, L, Atalar, T. 2006. Quantum chemical study on 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO) and some of its constitutional isomers. J Hazard Mater. 137:13331344 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Garcia, E, Lee, KY. 1992. Structure of 3-amino-5-nitro-1,2,4-triazole. Acta Crystallogr C Cryst Struct. 48:16821683 .

  • 21.

    Xu, L, Fang, GY, Li, XH, Yuan, EX, Hu, XG, Zhu, WH, Xiao, HM, Ji, GF. 2007. DFT study on the structures and properties of 3-nitro-1,2,4-triazol-5-one crystals at high pressure. J Mol Graph Model. 26:415419 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Schoyer, HFR, Welland-Veltmans, WHM, Louwers, J, Korting, PAOG AEDM van der Heijden Keizers, HLJ RP van der Berg 2002. Overview of the development of hydrazinium nitroformate. J Propul Power. 18:131137 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    L Le Campion S de Suzzoni-Dezard Robic, N, Vandais, A, Varenne, P, Noel, JP, Ouazzani, J. 2002. Synthesis of [3-C-14]- and [5-C-14]-labelled 5-nitro-1,2,4-triazol-3-one (NTO) and study of its chemical decomposition. J Phys Chem B. 106:40224026.

    • Search Google Scholar
    • Export Citation
  • 24.

    Vyazovkin, S, Burnham, AK, Criado, JM, Pérez-Maqueda, LA, Popescu, C, Sbirrazzuoli, N. 2011. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 520:119 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    ASTM E698-01. Standard test method for Arrhenius kinetic constants for thermally unstable materials. doi: .

  • 26.

    Kohsari, I, Pourmortazavi, SM, Hajimirsadeghi, SS. 2007. Non-isothermal kinetic study of the thermal decomposition of diaminoglyoxime and diaminofurazan. J Therm Anal Calorim. 89:543546 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Starink, MJ. 2003. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 404:163176 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Pourmortazavi, SM, Hosseini, SG, Rahimi-Nasrabadi, M, Hajimirsadeghi, SS, Momenian, H. 2009. Effect of nitrate content on thermal decomposition of nitrocellulose. J Hazard Mater. 162:11411144 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Criado, JM, Perez-Maqueda, LA, Sanchez-Jimenez, PE. 2005. Dependence of the preexponential factor on temperature. J Therm Anal Calorim. 82:671675 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Zhang, TL, Hu, RZ, Xie, Y, Li, FP. 1994. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC. Thermochim Acta. 244:171176 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Pourmortazavi, SM, Hajimirsadeghi, SS, Kohsari, I, Fathollahi, M, Hosseini, SG. 2008. Thermal decomposition of pyrotechnic mixtures containing either aluminum or magnesium powder as fuel. Fuel. 87:244251 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Pickard, JM. 2002. Critical ignition temperature. Thermochim Acta. 392:3740 .

  • 33.

    Shamsipur, M, Pourmortazavi, SM, Hajimirsadeghi, SS. 2011. Investigation on decomposition kinetics and thermal properties of copper fueled pyrotechnic compositions. Combust Sci Technol. 183:575587 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Gao, H-X, Zhao, F-Q, Hu, R-Z, Zhao, H-A, Zhang, H. 2009. Estimation of the critical temperature of thermal explosion for azido-acetic-acid-2-(2-azido-acetoxy)-ethylester using non-isothermal DSC. J Therm Anal Calorim. 95:477482 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Sućeska, M. 2002. A computer program based on finite difference method for studying thermal initiation of explosives. J Therm Anal Calorim. 68:865875 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Bellitto, VJ, Melnik, MI, Sorensen, DN, Chang, JC. 2010. Predicting the shock sensitivity of cyclotrimethylene-trinitramine. J Therm Anal Calorim. 102:557562 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Nov 2020 11 9 2
Dec 2020 2 0 0
Jan 2021 9 1 1
Feb 2021 3 0 0
Mar 2021 2 0 0
Apr 2021 4 0 0
May 2021 0 0 0