Thermal stability and decomposition kinetics for two energetic materials, potassium nitroform (KNF) and 5-Nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO), were investigated to obtain information on their safety for handling, storage, and use. Differential scanning calorimetry (DSC) and simultaneous thermogravimetry-differential thermal analysis (TG-DTA) techniques have been used to study thermal behavior of these energetic compounds. The results of TG analysis revealed that the main thermal degradation for the KNF occurs during two temperature ranges of 270–330 and 360–430 °C. Meanwhile, NTO decomposes completely in temperature range of 250–300 °C. TG-DTA analysis of KNF indicates that this energetic compound dehydrated (at about 108 °C) before its decomposition. However, NTO is thermally stable until its decomposition. The decomposition kinetic of energetic materials was studied by non-isothermal DSC under various heating rates. Kinetic parameters such as activation energy and frequency factor for thermal decomposition of energetic compounds were obtained via the methods proposed by ASTM E696 and Starink. Also, thermodynamic parameters correspond to the activation of thermal decomposition and critical ignition temperatures of the compounds were obtained.
Langlet, A, Latypov, NV, Goede, P, Bergman, J. 2004. Formation of nitroform in the nitration of gem-dinitro compounds. Propellants Explos Pyrotech. 29:344–348 .
Huang, Y, Gao, H, Twamley, B, Shreeve, JM. 2007. Synthesis and characterization of new energetic nitroformate salts. Eur J Inorg Chem. 2007:2025–2030 .
Singh, G, Felix, SP. 2003. Studies on energetic compounds. Part 32: crystal structure, thermolysis and applications of NTO and its salts. J Mol Struct. 649:73–81 .
Brill, TB, Gongwer, PE, Williams, GK. 1994. Thermal decomposition of energetic materials: kinetic compensation effects in HMX, RDX, and NTO. J Phys Chem. 98:12242–12247 .
Pourmortazavi, SM, Hajimirsadeghi, SS, Hosseini, SG. 2006. Characterization of the aluminum/potassium chlorate mixtures by simultaneous thermogravimetry-differential thermal analysis. J Therm Anal Calorim. 84:557–561 .
Santos, AFO ID Basílio Jr FS de Souza Medeiros, AFD, Pinto, MF DP de Santana Macêdo, RO. 2008. Application of thermal analysis in study of binary mixtures with metformin. J Therm Anal Calorim. 93:361–364 .
Yoshino, S, Miyake, A. 2010. Thermal behavior and evolved gases analysis of 1,2,4-triazole-3-one derivatives. J Therm Anal Calorim. 100:247–251 .
Yi, J-H, Zhao, F-Q, Ren, Y-H, Xu, S-Y, Ma, H-X, Hu, R-Z. 2010. Thermal decomposition mechanism and quantum chemical investigation of hydrazine 3-nitro-1,2,4-triazol-5-one (HNTO). J Therm Anal Calorim. 100:623–627 .
Hosseini, SG, Pourmortazavi, SM, Hajimirsadeghi, SS. 2005. Thermal decomposition of pyrotechnic mixtures containing sucrose with either potassium chlorate or potassium perchlorate. Combust Flame. 141:322–326 .
Shteinberg A . Thermal analysis of high-temperature fast reactions in energetic materials. J Therm Anal Calorim. 2011. doi: .
Li, Y, Cheng, Y. 2010. Investigation on the thermal stability of nitroguanidine by TG/DSC-MS-FTIR and multivariate non-linear regression. J Therm Anal Calorim. 100:949–953 .
Rothgery, EF, Audette, DE, Wedlich, RC, Csejka, DA. 1991. The study of the thermal decomposition of 3-nitro-1,2,4-triazol-5-one (NTO) by DSC, TGA-MS, and ARC. Thermochim Acta. 185:235–243 .
Sinditskii, VP, Smirnov, SP, Egorshev, VY. 2007. Thermal decomposition of NTO: an explanation of the high activation energy. Propellants Explos Pyrotech. 32:277–287 .
Kondrikov, BN, Smirnov, SP, Minakin, AV, Doherty, RM. 2004. Chemical kinetics of the thermal decomposition of NTO. Propellants Explos Pyrotech. 29:27–33 .
Long, GT, Brems, BA, Wight, CA. 2002. Thermal activation of the high explosive NTO: sublimation, decomposition, and autocatalysis. J Phys Chem B. 106:4022–4026 .
Ostmark, H, Bergman, H, Aqvist, G. 1993. The chemistry of 3-nitro-1,2,4-triazol-5-one (NTO)—thermal decomposition. Thermochim Acta. 213:165–175 .
Botcher, TR, Beardall, DJ, Wight, CA, Fan, LM, Burkey, TJ. 1996. Thermal decomposition mechanism of NTO. J Phys Chem. 100:8802–8806 .
Powala, D, Orzechowski, A, Florczak, B, Maranda, A, Nowaczewski, J. 2006. Less sensitive explosives—3-nitro-1,2,4-triazol-5-one (NTO). Przem Chem. 85:177–181.
Turker, L, Atalar, T. 2006. Quantum chemical study on 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO) and some of its constitutional isomers. J Hazard Mater. 137:1333–1344 .
Garcia, E, Lee, KY. 1992. Structure of 3-amino-5-nitro-1,2,4-triazole. Acta Crystallogr C Cryst Struct. 48:1682–1683 .
Xu, L, Fang, GY, Li, XH, Yuan, EX, Hu, XG, Zhu, WH, Xiao, HM, Ji, GF. 2007. DFT study on the structures and properties of 3-nitro-1,2,4-triazol-5-one crystals at high pressure. J Mol Graph Model. 26:415–419 .
Schoyer, HFR, Welland-Veltmans, WHM, Louwers, J, Korting, PAOG AEDM van der Heijden Keizers, HLJ RP van der Berg 2002. Overview of the development of hydrazinium nitroformate. J Propul Power. 18:131–137 .
L Le Campion S de Suzzoni-Dezard Robic, N, Vandais, A, Varenne, P, Noel, JP, Ouazzani, J. 2002. Synthesis of [3-C-14]- and [5-C-14]-labelled 5-nitro-1,2,4-triazol-3-one (NTO) and study of its chemical decomposition. J Phys Chem B. 106:4022–4026.
Vyazovkin, S, Burnham, AK, Criado, JM, Pérez-Maqueda, LA, Popescu, C, Sbirrazzuoli, N. 2011. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 520:1–19 .
ASTM E698-01. Standard test method for Arrhenius kinetic constants for thermally unstable materials. doi: .
Kohsari, I, Pourmortazavi, SM, Hajimirsadeghi, SS. 2007. Non-isothermal kinetic study of the thermal decomposition of diaminoglyoxime and diaminofurazan. J Therm Anal Calorim. 89:543–546 .
Starink, MJ. 2003. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 404:163–176 .
Pourmortazavi, SM, Hosseini, SG, Rahimi-Nasrabadi, M, Hajimirsadeghi, SS, Momenian, H. 2009. Effect of nitrate content on thermal decomposition of nitrocellulose. J Hazard Mater. 162:1141–1144 .
Criado, JM, Perez-Maqueda, LA, Sanchez-Jimenez, PE. 2005. Dependence of the preexponential factor on temperature. J Therm Anal Calorim. 82:671–675 .
Zhang, TL, Hu, RZ, Xie, Y, Li, FP. 1994. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC. Thermochim Acta. 244:171–176 .
Pourmortazavi, SM, Hajimirsadeghi, SS, Kohsari, I, Fathollahi, M, Hosseini, SG. 2008. Thermal decomposition of pyrotechnic mixtures containing either aluminum or magnesium powder as fuel. Fuel. 87:244–251 .
Pickard, JM. 2002. Critical ignition temperature. Thermochim Acta. 392:37–40 .
Shamsipur, M, Pourmortazavi, SM, Hajimirsadeghi, SS. 2011. Investigation on decomposition kinetics and thermal properties of copper fueled pyrotechnic compositions. Combust Sci Technol. 183:575–587 .
Gao, H-X, Zhao, F-Q, Hu, R-Z, Zhao, H-A, Zhang, H. 2009. Estimation of the critical temperature of thermal explosion for azido-acetic-acid-2-(2-azido-acetoxy)-ethylester using non-isothermal DSC. J Therm Anal Calorim. 95:477–482 .
Sućeska, M. 2002. A computer program based on finite difference method for studying thermal initiation of explosives. J Therm Anal Calorim. 68:865–875 .
Bellitto, VJ, Melnik, MI, Sorensen, DN, Chang, JC. 2010. Predicting the shock sensitivity of cyclotrimethylene-trinitramine. J Therm Anal Calorim. 102:557–562 .