View More View Less
  • 1 Textile Materials and Technology Laboratory, Donghua University, Shanghai 201620, People's Republic of China
  • | 2 College of Garment & Art Design, Jiaxing University, Jiaxing 314001, Zhejiang, People's Republic of China
Restricted access

Abstract

Fractal theory has been proved effective to characterize the complex pore structure. In this article, the fractal method is utilized to study the structure property of fibrous assemblies. The box dimension parameter is applied to characterize the pore structure of fibrous assemblies by analyzing the electronic scanning microscope images of the fibrous assemblies. Furthermore, a fractal model for predicting effective heat conductivity is established. Experiment is conducted to verify the model, and good agreement is found between the experimental and theoretical results. The fractal model is also compared with the previous models for predicating heat conductivity, and the former is proved to be more accurate.

  • 1.

    Bankvail, C. 1973. Heat transfer in fibrous materials. J Test Eval. 3:235243.

  • 2.

    Egyed, O, Simon, J. 1979. Investigations on the flame-retardation of cellulosic fibrous materials. J Therm Anal Calorim. 16:307320 .

  • 3.

    Monald, JM, George Lamb, ER. 1987. Measurement of thermal conductivity of nonwovens using a dynamic method. Text Res J. 57:721727 .

  • 4.

    Mohammadi, M, Banks, LP, Ghadimi, P. 2003. Determining effective thermal conductivity of multilayered nonwoven fabrics. Text Res J. 73:802808 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Mazzuchettl, G, Lopardo, G, Demichelis, R. 2007. Influence of nonwoven fabrics’ physical parameters on thermal and water vapor resistance. J Ind Text. 36:253264 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Chen, JJ, Yu, WD. 2010. A numerical analysis of heat transfer in an evacuated flexible multilayer insulation material. J Therm Anal Calorim. 101:11831188 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Hao, LC, Yu, WD. 2010. Evaluation of thermal protective performance of basalt fiber nonwoven fabrics. J Therm Anal Calorim. 100:551555 .

  • 8.

    Oldich, J, Pan, N. 2000. Thermo-insulating properties of perpendicular-laid versus cross-laid lofty nonwoven fabrics. Text Res J. 70:121128 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Du, N, Fan, JT, Wu, HJ. 2008. Optimum porosity of fibrous porous materials for thermal insulation. Fiber Polym. 9:2733 .

  • 10.

    Wilson, CA, Niven, BE, Laing, RM. 1999. Estimating thermal resistance of the bedding assembly from thickness of materials. Int J Cloth Sci Technol. 11:262276 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Yu, BM, Cheng, P. 2004. Fractal analysis of permeabilities for porous media. AIChE J. 50:4657 .

  • 12.

    Meng, FG, Zhang, HM, Li, YS, Zhang, XW, Yang, FL, Xiao, JN. 2005. Cake layer morphology in microfiltration of activated sludge wastewater based on fractal analysis. Sep Purif Technol. 44:250257 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Ozao, R, Ochiai, M. 1993. Fractal nature and thermal analysis of powders. J Therm Anal Calorim. 104:6167.

  • 14.

    He, GL, Zhao, ZC, Ming, PW, Abuliti, A, Yin, CY. 2007. A fractal model for predicting permeability and liquid water relative permeability in the gas diffusion layer of PEMFCs. J Power Sources. 163:846852 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Yang, XH, Li, DG. 2005. Quantitative expression of nonwovens’ pore structure. Ind Text. 1:1015.

  • 16.

    Tang, HP, Zhu, JL, Xi, ZP, Di, XB, Wang, JY, Ao, QB. 2010. Impact factors of fractal analysis of porous structure. Sci China Technol Sci. 53:348351 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Yang S , Yu WD, Pan N. Fractal approach to sound absorption behavior in cashmere fiber assembly. In: Proceedings of the 12th international wool research conference, vol 2; 2010, p. 827831.

    • Search Google Scholar
    • Export Citation
  • 18.

    Schuhmeister J . Versuche uber das Warmeleitungsvermogen der Baumwolle, Schafwolle u Seide, Ber. K. Aka. Wien. Math.-Naturwiss. Klass. 1877;76: 283.

    • Search Google Scholar
    • Export Citation
  • 19.

    Baxter S . Thermal conductivity of textiles. Pro Phys Soc Lond. 1945;58: 10518.

  • 20.

    Hager, NE RC Steere Jr 1967. Radiant heat transfer in fibrous thermal insulation. J Appl Phys. 38:46634668 .

  • 21.

    Tong, TW, Yang, QS, Tien, CL. 1983. Radiative heat transfer in fibrous insulations-part II: experimental analytic study. J Heat Transf. 105:7681 .

  • 22.

    Lee, SC, Cunnington, GR. 2000. Conduction and radiation heat transfer in high porosity fiber thermal insulation. J Thermophys Heat Transf. 14:121136 .

  • 23.

    Daryabeigi, K. 2003. Heat transfer in high temperature fibrous insulation. J Thermophys Heat Transf. 17:1020 .

  • 24.

    Zhao, SY, Zhang, BM, He, XD. 2009. Temperature and pressure dependent effective thermal conductivity of fibrous insulation. Int J Heat Mass Transf. 48:440448.

    • Search Google Scholar
    • Export Citation
  • 25.

    Fanworth, B. 1983. Mechanisms of heat flow through clothing insulation. Text Res J. 53:717725 .

  • 26.

    Fan, JT, Luo, ZG, Li, Y. 2000. Heat and moisture transfer with sorption and condensation in porous clothing assemblies and numerical simulation. Int J Therm Sci. 43:29893000.

    • Search Google Scholar
    • Export Citation
  • 27.

    Cheng, XY, Fan, JT. 2004. Simulation of heat and moisture transfer with phase change and mobile condensates in fibrous insulation. Int J Therm Sci. 43:665676 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Veiseh, S, Khodabandeh, N, Hakkaki-Fard, A. 2009. Mathematical methods for heat conductivity relationship in fibrous heat insulations for practical applications. Asian J Civil Eng (Build Hous). 10:201214.

    • Search Google Scholar
    • Export Citation
  • 29.

    Yu, BM, Lee, LJ, Cao, HQ. 2002. A fractal in-plane permeability model for fabrics. Polym Compos. 23:201221 .

  • 30.

    Yu, BM, Cheng, P. 2002. A fractal permeability model for bi-dispersed porous media. Int J Heat Mass Transf. 45:29832993 .

  • 31.

    Chen, YP, Shi, MH. 2000. Study on effective thermal conductivity of real porous media by using fractal theory. J Appl Sci. 3:263266.

    • Search Google Scholar
    • Export Citation
  • 32.

    Yu, BM. 2003. Analysis of heat and mass transfer in fractal media. Int J Heat Mass Transf. 3:481483.

  • 33.

    Yu, ZT, Hu, YC, Tian, T, Fan, LW. 2007. Fractal model for predicting effective thermal conductivity perpendicular to fibers of wood. J Zhejiang Univ. 2:352355.

    • Search Google Scholar
    • Export Citation
  • 34.

    Shi, MH, Li, XC, Chen, YP. 2006. Determinating effective heat conductivity of polyurethane foam by fractal method. Sci China Ser E. 36:560568.

    • Search Google Scholar
    • Export Citation
  • 35.

    Gao, J, Pan, N, Yu, WD. 2006. A fractal approach to goose down structure. Int J Nonlinear Sci Num. 7:113116.

  • 36.

    Zhu, FL, Zhang, WY. 2008. Fractal model for effective thermal conductivity of emergency thermal protective fabrics. J Text Res. 29:3943.

    • Search Google Scholar
    • Export Citation
  • 37.

    Kou, JL, Wu, FM, Lu, HG, Xu, YS, Song, FQ. 2009. The effective thermal conductivity of porous media on statistical self-similarity. Phys Lett A. 374:6265 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Mandelbrot BB . The fractal geometry of nature. New York: W.H. Freeman and Company; 1982.

  • 39.

    Bhattacharyya RK . Heat transfer model for fibrous insulations, thermal insulation performance. American Society for Testing and Materials; 1980.

    • Search Google Scholar
    • Export Citation
  • 40.

    Stark, C, Fricke, J. 1993. Improved heat transfer models for fibrous insulations. Int J Heat Mass Transf. 36:617625 .

  • 41.

    Gebhart B . Heat conduction and mass diffusion. New York: McGraw-Hill; 1993.

  • 42.

    Cussler, EL. 2000 Diffusion-mass transfer in fluid systems Cambridge University Press Cambridge.

  • 43.

    Verschoor, JD, Greebler, P, Manville, NJ. 1952. Heat transfer by gas conduction and radiation in fibrous insulation. J Heat Transf. 74:961968.

    • Search Google Scholar
    • Export Citation
  • 44.

    Strong, HM, Bundy, FP, Bovenkerk, HP. 1960. Flat panel vacuum thermal insulation. J Appl Phys. 31:3950 .

  • 45.

    Davis, LB, Birkebak, RC. 1974. On the transfer of energy in layers of fur. Biophys J. 14:249268 .

  • 46.

    Song, WF, Yu, WD. 2010. Study on radiative heat transfer property of fiber assemblies using FTIR. J Therm Anal Calorim. 3:785790.

  • 47.

    Yin, DF, Li, YM, Wang, YM, Wang, L. 2008. Study on threshold selection method for images. J Comput Sci. 3:136138.

  • 48.

    Zhang, LZ. 2008. A fractal model for gas permeation through porous membranes. Int J Heat Mass Transf. 51:52885295 .

  • 49.

    Xu, P, Yu, BM. 2008. Developing a new form of permeability and Kozeny–Carman constant for homogeneous porous media by means of fractal geometry. Adv Water Resour. 31:7481 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Yu, BM. 2008. Analysis of flow in fractal porous media. Appl Mech Rev. 61:119 .

  • 51.

    Mohammadi, M, Lee, PB. 2002. Air permeability of multilayer needle punched nonwoven fabrics: theoretical method. J Ind Text. 32:4557 .

  • 52.

    Koponen, A, Kandhai, D, Helen, E, Alava, M, Hoekstra, A, Kataja, M, Niskanen, K. 1998. Permeability of three-dimensional random fiber webs. Phys Rev Lett. 80:716719 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Vallabh, R, Lee, PB, Seyam, AF. 2010. New approach for determining tortuosity in fibrous porous media. J Eng Fibers Polym. 5:715.

  • 54.

    Gérard, L, André, R, Claude, W. 1989. Theoretical and experimental opening sizes of heat-bonded geotextiles. Text Res J. 59:208217 .

  • 55.

    Liu, LF, Wang, WZ, Chu, CY, Chi, JK. 2002. Study on relation between pore size distribution and permeability of nonwoven geotextile. J Qingdao Univ. 1:15.

    • Search Google Scholar
    • Export Citation
  • 56.

    Liu, RT. 1995. Study on heat transfer of disordered fiber assembly. J Text Res. 5:265267.

  • 57.

    Yang, S, Yu, WD. 2010. Study on texture character and acoustic absorbent behavior of nonwovens. Tech Text. 7:611.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)