In an effort to understand the reaction of antibiotic hydrolysis with B2 metallo-β-lactamases (MβLs), the thermodynamic parameters of imipenem hydrolysis catalyzed by metallo-β-lactamase ImiS from Aeromonas veronii bv. sobria were determined by microcalorimetric method. The values of activation free energy are 86.400 ± 0.043, 87.543 ± 0.034, 88.772 ± 0.024, and 89.845 ± 0.035 kJ mol−1 at 293.15, 298.15, 303.15, and 308.15 K, respectively, activation enthalpy
is 18.586 ± 0.009 kJ mol−1, activation entropy
is −231.34 ± 0.12 J mol−1 K−1, apparent activation energy E is 21.084 kJ mol−1, and the reaction order is 1.5. The thermodynamic parameters reveal that the imipenem hydrolysis catalyzed by metallo-β-lactammase ImiS is an exothermic and spontaneous reaction.
Walsh, CT, Wright, GD. 2005. Introduction: antibiotic resistance. Chem Rev. 105:391–393 .
Neu, HC. 1992. The crisis in antibiotic resistance. Science. 257:1064–1073 .
Rasmussen, BA, Bush, K. 1997. Carbapenem-hydrolyzing β-lactamases. Antimicrob Agents Chemother. 41:223–232.
Ronald, WR, Kenneth, JW, Lisa, DM, Alan, WD, Richard, H, Robert, TG, James, PS, Jordan, H. 1989. Studies on the structures of imipenem, dehydropeptidase I hydrolyzed imipenem, and related analogues. J Org Chem. 54:653–660 .
Galleni, M, Lamotte-Brasseur, J, Rossolini, GM, Spencer, J, Dideberg, O, Frere, JM The Metallo-β-Lactamase Working Group 2001. Standard numbering scheme for class B β-lactamses. Antimicrob Agents Chemother. 45:660–663 .
Frere, JM, Dubus, A, Galleni, M, Matagne, A, Amicosante, G. 1999. Mechanistic diversity of β-lactamases. Biochem Soc Trans. 27:58–63.
Fabiane, SM, Sohi, MK, Wan, T, Payne, DJ, Bateson, JH, Mitchell, T, Sutton, BJ. 1998. Crystal structure of the zinc-dependent β-lactamase from Bacillus cereus at 1.9 Å resolution: binuclear active site with features of a mononuclear enzyme. Biochemistry. 37:12404–12411 .
Hernandez Valladares, M, Felici, A, Weber, G, Adolph, HW, Zeppezauer, M, Rossolini, GM, Amicosante, G, Frere, JM, Galleni, M. 1997. Zn(II) dependence of the Aeromonas hydrophila AE036 metallo-beta-lactamase activity and stability. Biochemistry. 36:11534–11541 .
LeBlond, C, Wang, J, Larsen, RD, Orella, CJ, Forman, AL, Landau, RN et al. 1996. Reaction calorimetry as an in situ kinetic tool for characterizing complex reactions. Thermochim Acta. 289 2 189–207 .
Zhao YL , Wang JB, Zhang P, Shan LM, Li RS, Xiao XH. Microcalorimetric study of the opposing effects of ginsenosides Rg1 and Rb1 on the growth of micesplenic lymphocytes. J Therm Anal Calorim. 2011. doi: .
Garcia-Cuello, V, Moreno-Pirajá, JC, Giraldo-Gutiérrez, L, Sapag, K, Zgrablich, G. 2009. A new microcalorimeter of adsorption for the determination of differential enthalpies. Microporous Mesoporous Mater. 120:239–245 .
Yang, L, Sun, L, Xu, F, Zhang, J, Zhao, J, Zhao, Z et al. 2010. Inhibitory study of two cephalosporins on E. coli by microcalorimetry. J Therm Anal Calorim. 100 2 589–592 .
Gao HZ , Yang Q, Yan XY, Wang ZJ, Feng JL, Yang X, et al. Exploring antibiotic resistant mechanism by microcalorimetry: determination of thermokinetic parameters of metallo-β-lactamase L1 catalyzing penicillin G hydrolysis. J Therm Anal Calorim. 2011. doi: .
Crawford, PA, Sharma, N, Chandrasekar, S, Sigdel, T, Walsh, TR, Spencer, J et al. 2004. Over-expression, purification, and characterization of metallo-β-lactamase ImiS from Aeromonas Veronii bV Sobria. Protein Expr Purif. 36:272–279 .
Bradford, MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248–254 .
Marthada, VK. 1980. The enthalpy of solution of SRM 1655(KCl) in H2O. J Res Nat Bur Stand. 85 6 467–471 .
Ditmars, DA, Ishihara, S, Chang, SS. 1982. Enthalpy and heat-capacity standard reference material: synthetic sapphire (α-Al2O3) from 10 to 2250 K. J Res N at l Bur Stand. 87:159–163 .
Gao, S, Chen, S, Hu, R, Li, H, Shi, Q. 2002. Derivation and application of thermodynamic equations. Chin J Inorg Chem. 18 4 362–366.
Spencer, J, Clarke, AR, Walsh, TR. 2001. Novel mechanism of hydrolysis of therapeutic beta-lactams by Stenotrophomonas maltophilia L1 metallo-β-lactamase. J Biol Chem. 276:33638–33644 .
Feng, JL, Yang, X, Yan, XY, Gao, HZ, Wu, D, Yang, KW. 2011. Expression, purification of ImiS and kinetic studies on hydrolysis of three types of β-lactam antibiotics catalyzed by ImiS. Chin J Antibiotic. 36 3 197–200.
Yan, XY, Gao, HZ, Feng, JL, Yang, X, Cheng, X, Jia, C, Yang, KW. 2011. Wild-type and Co(II) substituted metallo-β-lactamase L1: spectroscopic characterization and kinetic studies of catalyzing antibiotic hydrolysis. Chin J Antibiotic. 36 5 388–393.