View More View Less
  • 1 Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
Restricted access


We report the in situ measurements of the sublimation rate and activation energy of continuous nanofilms of 2,4,6-trinitrotoluene (TNT) in air using UV absorbance spectroscopy. The films were prepared using acetone-dissolved TNT by simple spin coating deposition technique. Unlike traditional mass loss techniques, this new method is independent of the surface area of the sample which contributes to errors in determining physical parameters accurately in both bulk and thin films of materials. The calculated activation energy and temperature-dependent sublimation rates agree well with the reported values for TNT thin films. The results suggest that UV absorbance spectroscopy is an efficient tool in measuring thermodynamic properties in the nanometer scale for materials with absorbance in the UV region of the electromagnetic spectrum.

  • 1.

    Czarnecki, J, Sestak, J. 2000. Practical thermogravimetry. J Therm Anal Calorim. 60:759778 .

  • 2.

    Hajimirsadeghis, SS, Teimouri, MR, Rahimi-Nasrabadi, M, Dehghanpour, S. 2009. Non-isothermal kinetic study of the thermal decomposition of N-{bis[benzyl(methyl)amino]phosphoryl}-2,2-dichloroacetamide and N-{bis[dibenzylamino]phosphoryl}-2,2-dichloroacetamide. J Therm Anal Calorim. 98:463468 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Hobbs, ML, Nakos, JT, Brady, PD. 2011. Response of a glass/phenolic composite to high temperatures. J Therm Anal Calorim. 103:543553 .

  • 4.

    Gershanik, AP, Zeiri, Y. 2010. Sublimation rate of TNT microcrystals in air. J Phys Chem A. 114:1240312410 .

  • 5.

    Mu, R, Ueda, A, Liu, YC, Wu, M, Henderson, DO, Lareau, RT, Chamberlain, RT. 2003. Effects of interfacial interaction potential on the sublimation rates of TNT films on a silica surface examined by QCM and AFM techniques. Surf Sci. 530:L293L296 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Pitchimani, R, Burnham, AK, Weeks, BL. 2007. Quantitative thermodynamic analysis of sublimation rates using an atomic force microscope. J Phys Chem B. 11:91829185 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Burnham, AK, Qiu, SR, Pitchimani, R, Weeks, BL. 2009. Comparison of kinetic parameters of single crystal pentaerythritol tetranitrate using atomic force microscopy and thermogravimetric analysis: implications on coarsening mechanisms. J Appl Phys. 105:104312 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Ingle, JDJ, Crouch, SR. 1988 Spectrochemical analysis Prentice Hall New Jersey.

  • 9.

    Schubert, EF. 2006 Light-emitting diodes 2 Cambridge University Press Cambridge .

  • 10.

    Hikal, WM, Harmon, HJ. 2008. Early events in 2,4,6-trinitrotoluene (TNT) degradation by porphyrins: binding of TNT to porphyrin by hydrophobic and hydrogen bonds. J Hazard Mater. 154:826831 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Hummel, RE, Fuller, AM, Schöllhorn, C, Holloway, CPH. 2006. Detection of explosive materials by differential reflection spectroscopy. Appl Phys Lett. 88:231903 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Phelan JM , Patton RT. Sublimation rates of explosive materials-method development and initial results, Sandia report SAND2004-4525, Sandia national laboratories: Albuquerque, 2004.

    • Search Google Scholar
    • Export Citation
  • 13.

    Zeman, S. 1999. Analysis and prediction of the Arrhenius parameters of low-temperature thermolysis of nitramines by means of the 15 N NMR spectroscopy. Thermochim Acta. 333:121129 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Pella, PE. 1977. Measurement of the vapor pressures of TNT, 2,4-DNT, 2,6-DNT, and EGDN. J Chem Thermodynam. 9:301305 .

  • 15.

    Leggett, DC. 1977. Vapor pressure of 2,4,6-trinitrotoluene by a gas chromatographic headspace technique. J Chromatogr. 133:8390 .

  • 16.

    Cundall, RB, Palmer, TF, Wood, CEC. 1978. Vapour pressure measurements on some organic high explosives. J Chem Soc Faraday Trans1. 74:13391345 .

  • 17.

    Oxley, JC, Smith, JL, Shinde, K, Moran, J. 2005. Determination of the vapor density of triacetone triperoxide (TATP) using a gas chromatography headspace technique. Propell Explos Pyrot. 30:127130 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Lenchitz, C, Velicky, RW. 1970. Vapor pressure and heat of sublimation of three nitrotoluenes. J Chem Eng Data. 15:401403 .

  • 19.

    Edwards, GT. 1950. The vapor pressure of 2,4,6-trinitrotoluene. Trans Faraday Soc. 46:423 .

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
per Year
per Year
Founder Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)