View More View Less
  • 1 Department of Physics, Sichuan Normal University, Chengdu 610066, People's Republic of China Zhouxl_wuli@163.com
  • | 2 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, People's Republic of China
Restricted access

Abstract

The phase transition of TiN from the NaCl structure to the CsCl structure is investigated by the first-principles plane wave pseudopotential density functional theory method, and the thermodynamic properties of the NaCl structures are obtained through the quasi-harmonic Debye model. It is found that the pressures for transition from the NaCl structure to the CsCl structure are 364.1 GPa (for GGA) and 322.2 (for LDA) from equal enthalpies. The calculated ground state properties such as equilibrium lattice constant, bulk modulus, and its pressure derivative are in good agreement with experimental and theoretical data of others. Moreover, the dependences of the relative volume V/V0 on the pressure P, the Debye temperature ΘD, and heat capacity CV on the pressure P and temperature T, as well as the variation of the thermal expansion α with temperature and pressure are also successfully obtained.

  • 1.

    Ahuja, R, Eriksson, O, Wills, JM, Johansson, B. 1996. Structural, elastic, and high-pressure properties of cubic TiC, TiN, and TiO. Phys Rev B. 53:30723079 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Li, X, Kobayashi, T, Sekine, T. 2004. Stability of TiN and fast synthesis of rutile from TiN and CuO by shock compression. Solid State Commun. 130 1–2 7982 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Schwarz, K, Crit, CRC. 1987. Band structure and chemical bonding in transition metal carbides and nitrides. Rev Solid State Mater Sci. 13:211257 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Sempere, J, Nomen, R, Serra, E, Sempere, B, Guglielmi, D. 2011. Thermal behavior of oxidation of TiN and TiC nanoparticles. J Therm Anal Calorim. 105:719726 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Pelletier, H, Carradò, A, Faerber, J, Mihailescu, IN. 2011. Microstructure and mechanical characteristics of hydroxyapatite coatings on Ti/TiN/Si substrates synthesized by pulsed laser deposition. Appl Phys A. 102:629640 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Hidalgo, JA, Montero-Ocampo, C, Cuberes, MT. 2009. Nanoscale visualization of elastic inhomogeneities at TiN coatings using ultrasonic force microscopy. Nanoscale Res Lett. 4:14931501 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Pham VH , Yook SW, Lee EJ, Li Y, Jeon G, Lee JJ, Kim HE, Koh YH. Deposition of TiN films on Co-Cr for improving mechanical properties and biocompatibility using reactive DC sputtering. J Mater Sci Mater Med. 2011. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Price, JB, Borland, JO, Selbrede, S. 1993. Properties of chemical-vapor- deposited titanium nitride. Thin Solid Films. 236:311318 .

  • 9.

    Hegde, RI, Fiordalice, RW, Travis, EO, Tobin, PJ. 1993. Thin film properties of low-pressure chemical vapor deposition TiN barrier for ultra-large-scale integration applications. J Vac Sci Technol B. 11:12871296 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Oh, UC, Je, JH. 1993. Effects of strain energy on the preferred orientation of TiN thin films. J Appl Phys. 74:16921696 .

  • 11.

    Marlo, M, Milman, V. 2000. Density–functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals. Phys Rev B. 62:28992907 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Siegel, DJ, Hector, LG JB Adams Jr 2003. Ab initio study of Al–ceramic interfacial adhesion. Phys Rev B. 67:4092105 .

  • 13.

    Zhao, JG, Yang, LX, Yu, Y, You, SJ, Yu, RC, Chen, LC, Li, FY, Jin, CQ, Li, XD, Li, YC, Liu, J. 2005. Isostructural phase transition of TiN under high pressure. Chin Phys Lett. 22:11991201 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Chauhan, R, Singh, S, Singh, RK. 2008. Structural stability of TiO and TiN under high pressure. Cent Eur J Phys. 6:277282 .

  • 15.

    Vanderbilt, D. 1990. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B. 41:78927895 .

  • 16.

    Ceperley, DM, Alder, BJ. 1980. Ground state of the electron gas by a stochastic method. Phys Rev Lett. 45:566569 .

  • 17.

    Perdew, JP, Burke, K, Ernzerhof, M. 1996. Generalized gradient approximation made simple. Phys Rev Lett. 77:38653868 .

  • 18.

    Monkhorst, J, Pack, JD. 1976. Special points for brillouin-zone integrations. Phys Rev B. 13:51885192 .

  • 19.

    Payne, MC, Teter, MP, Allen, DC, Arias, TA, Joannopoulos, JD. 1992. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Modern Phys. 64:10451097 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Milman, V, Winkler, B, White, JA, Packard, CJ, Payne, MC, Akhmatskaya, EV, Nobes, RH. 2000. Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane–wave study. Int J Quantum Chem. 77:895910 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Lim AR . Thermodynamic properties and phase transitions of Tutton salt (NH4)2Co(SO4)2·6H2O crystals. J Therm Anal Calorim. 2011. doi: .

  • 22.

    Atanasova L , Baikusheva-Dimitrova G. Heat capacity and thermodynamic properties of tellurites Yb2(TeO3)3, Dy2(TeO3)3 and Er2(TeO3)3. J Therm Anal Calorim. 2011. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Xue, BD, Yang, Q, Chen, SP, Gao, SL. 2010. Synthesis, crystal structure, and thermodynamics of a high-nitrogen copper complex with N, N-bis-(1(2)H-tetrazol-5-yl) amine. J Therm Anal Calorim. 101:9971002 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Knyazev, A, Maczka, M, Kuznetsova, N, Hanuza, J, Markin, A. 2009. Thermodynamic properties of rubidium niobium tungsten oxide. J Therm Anal Calorim. 98:843848 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Blanco, MA, Francisco, E, Luana, V. 2004. GIBBS: isothermal–isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comp Phys Commun. 158:5772 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Guo, HZ, Chen, XR, Cai, LC, Zhu, J, Gao, J. 2005. Structural and thermodynamic properties of MgB2 from first-principles calculations. Solid State Commun. 134:787790 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Chen, XR, Wang, HY, Cheng, Y, Hao, YJ. 2005. First-principles calculations for structure and equation of state of MgB2 at high pressure. Phys B Condens Matter. 307:281286 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Guo HZ , Chen XR, Cai LC, Zhu J, Gao J. First-principles calculations of elastic constants of superconducting MgB2. Chin Phys Lett. 2005. doi: .

  • 29.

    Liu, K, He, DWN, Zhou, XL, Chen, HH. 2011. First-principles study of structural and thermodynamic properties of osmium. Phys B Condens Matter. 406:30653069 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Hu CE , Zeng ZY, Cheng Y, Chen XR, Cai LC. First-principles calculations for electronic, optical and thermodynamic properties of ZnS. Chin Phys B. 2008. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Lu, LY, Chen, XR, Chen, Y, Zhou, JZ. 2005. Transition phase and thermodynamic properties of GaN via first-principles calculations. Solid State Commun. 136:152156 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Blanco, MA, Pendás, AM, Francisco, E, Recio, JM, Franco, R. 1996. Thermodynamical properties of solids from microscopic theory: applications to MgF2 and Al2O3. J Mol Struct (Theochem.). 368:245255 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Flórez M , Recio JM, Francisco E, Blanco MA, Pendás AM. First-principles study of the rock salt-cesium chloride relative phase stability in alkali halides. Phys Rev B. 2002;66: 144112/1-8.

    • Search Google Scholar
    • Export Citation
  • 34.

    Francisco E , Sanjurjo M A. Atomistic simulation of SrF2 polymorphs. Phys Rev B. 2001;63: 094107/1-9.

  • 35.

    Chen, HH, Peng, F, Mao, HH, Shen, GY, Liermann, HP, Li, Z, Shu, Jf. 2010. Strength and elastic moduli of TiN from radial X-ray diffraction under nonhydrostatic compression up to 45 GPa. J Appl Phys. 107:15.

    • Search Google Scholar
    • Export Citation
  • 36.

    Birch, F. 1947. Finite elastic strain of cubic crystals. Phys Rev. 71:809824 .

  • 37.

    Stampf, C, Mannstadt, W, Asahi, R, Freeman, AJ. 2001. Electronic structure and physical properties of early transition metal mononitrides: density–functional theory LDA, GGA, and screened-exchange LDA FLAPW calculations. Phys Rev B. 63:155106155111 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Gubanov, VA, Ivanovsky, AL, Zhukov, VP. 1994 Electronic structure of refractory carbides and nitrides Cambridge University Press Cambridge .

  • 39.

    Shimizu, H, Shirai, M, Suzuki, N. 1997. Electronic, structural and magnetic properties of transition-metal mononitrides. J Phys Soc Jpn. 66:31473152 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Zhukov, VP, Gubanov, VA, Jepsen, O, Christensen, NE, Andersen, OK. 1988. Calculated energy band structures and chemical bonding in titanium and vanadium carbides, nitrides and oxides. J Phys Chem Solids. 49:841849 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Villars, P, Calvert, LD. 1991 Pearson's handbook of crystallographic data for intermetallic phases 2 ASM International, Materials Park Ohio.

    • Search Google Scholar
    • Export Citation
  • 42.

    Wyckoff, RWG. 1963 Crystal structures 2 Wiley New York.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)