View More View Less
  • 1 University of Novi Sad, Faculty of Technical Sciences, Trg D. Obradovića 6, 21000, Novi Sad, Serbia analeto@yahoo.com
  • | 2 New Technology, Research Centre in the Westbohemian Region, West Bohemian University, Universitní 8, Pilsen 30114, Czech Republic
  • | 3 Division of Solid-State Physics, Institute of Physics, Cukrovarnická 10, 16200, Praha, Czech Republic
Restricted access

Abstract

The revision of the meaning of the famous Hrubý glass-forming coefficient (as well as of other analogous coefficients by, e.g., Weinberg and Lu–Liu) reveals some generalized correlations between glass-forming ability (GFA) and glass stability. The relative change of the Hrubý parameter is supreme in almost all cases. The Hrubý parameter is more sensitive in relation to the change of both the super-cooled region and the reduced glass-transition temperature. The only exception is the restricted sensitivity respecting the reciprocal reduced glass-transition temperature in some cases of the bulk metallic glasses. The correlation of the Hrubý coefficient with GFA is agreeable for oxide glasses and thus can be commonly employed as a reliable and precise glass-forming criterion. Associated problems are the experimental determination of relevant temperatures, most pertinent that for glass transition which is dependent to preparative condition of glass formation.

  • 1.

    Tauc, J, Grigorovici, R, Vancu, A. 1966. Optical properties and electronic structure of amorphous germanium. Phys Stat Sol. 15:627637 .

  • 2.

    Tauc J . Optical properties of amorphous and liquid semiconductors. In: J Tauc, editor. Amorphous and liquid semiconductors. London: Plenum Press. 1974.

    • Search Google Scholar
    • Export Citation
  • 3.

    Šesták, J. 2006 Science of heat and thermophysical studies: a general approach to thermal analysis Elsevier Amsterdam.

  • 4.

    Hrubý, A. 1972. Evaluation of glass-forming tendency by means of DTA. Czech J Phys B. 22:11871193 .

  • 5.

    Varshneya, A, Mauro, J. 2010. Comment on Misconceived ASTM Definition of “Glass” by A. C. Wright. Glass Technol Eur J Glass Sci Technol A. 51:2830.

    • Search Google Scholar
    • Export Citation
  • 6.

    Gutzow, I, Pascova, R, Schmelzer, JWP. 2010. Glass transition behavior: a generic phenomenological approach. Int J Appl Int J Appl Glass Sci. 1 3 221236 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Queiroz, C, Šesták, J. 2010. Aspects of the non-crystalline state. Phys Chem Glasses Eur J Glass Sci Technol B. 51:165172.

  • 8.

    Suñol, J, Bonastre, J. 2010. Crystallization kinetics of metallic glasses. Transformation diagrams. J Therm Anal Calorim. 102:447450 .

  • 9.

    Svoboda, R, Málek, J, Pustková, P, Čičmanec, P. 2009. Volume and enthalpy relaxation in the glass transition region of amorphous selenium. J Non-Cryst Solids. 355:264272 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Šestak J . Citation records and some forgotten anniversaries in thermal analysis. J Thermal Anal Calorim. in print 2011. doi: .

  • 11.

    Weinberg, MC, Uhlmann, DR, Zanotto, ED. 1989. “Nose method” of calculating critical cooling rates for glass-formation. J Am Ceram Soc. 351:20542058 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Ray, CS, Reis, ST, Bow, RK, Holand, W, Rheinberger, V. 2005. A new DTA method for measuring critical cooling rate for glass formation. J Non-Cryst Solids. 351:13501358 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Yue, Y-Z. 2008. Characteristic temperatures of enthalpy relaxation in glass. J Non-Cryst Solids. 354:11121118 .

  • 14.

    Zanotto, ED. 1987. Isothermal and adiabatic nucleation in glass. J Non-Cryst Solids. 89:10361 .

  • 15.

    Zanotto, ED. 1985. Experimental test of the classical nucleation theory for glasses. J Non-Cryst Solids. 74:373394 .

  • 16.

    Cabral1 AA , Fokin VM, Zanotto ED. On the determination of nucleation rates in glasses by nonisothermal methods. J Am Ceram Soc. 2010; 93: 243840.

    • Search Google Scholar
    • Export Citation
  • 17.

    Fokin, VM, Zanotto, ED, Schmelzer, JWP. 2003. Homogeneous nucleation versus glass transition temperature of silicate glasses. J Non-Cryst Solids. 321:5263 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Fokin, VM, Nascimento, MLF, Zanotto, ED. 2005. Correlation between maximum crystal growth rate and glass transition temperature of silicate glasses. J Non-Cryst Solids. 351:4789.

    • Search Google Scholar
    • Export Citation
  • 19.

    Tammann, G. 1904. Über die wirkung von Silicium MetatitanÄuhedrat. Z Elektrochemie. 10:532 .

  • 20.

    Tammann, G. 1926. Die abhängigkeit der viskosität von der temperatur bei unterkühlten flüssigkeiten. Zeit Anorg Allgem Chemie. 156:245247 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Kauzmann, W. 1948. The nature of the glassy state and the behavior of liquids at low temperatures. Chem Rev. 43:219226 .

  • 22.

    Turnbull, D. 1969. Under what conditions can a glass be formed. Contemp Phys. 10:473478 .

  • 23.

    Sakka, S, Mackenzie, JD. 1971. Relation between apparent glass transition temperature and liquidus temperature for inorganic glasses. J Non-Cryst Solids. 6:145162 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Uhlmann, DR. 1972. A kinetic treatment of glass formation. J Non-Cryst Solids. 7:337348 .

  • 25.

    Davies, HA. 1976. The formation of metallic glasses. Phys Chem Glasses. 17:159163.

  • 26.

    Angell, CA. 1968. Oxide glasses in light of the ‘Ideal glass’ concept. I. General aspects: ideal and non- ideal transitions. J Am Ceram Soc. 51:117124 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Šesták, J. 1985. Some thermodynamic aspects of the glassy state. Thermochim Acta. 95:459471 .

  • 28.

    Hrubý, A. 1973. Glass-forming tendency in the GeSx system. Czech J Phys B. 53:12631272 .

  • 29.

    Šesták, J. 1996. Use of phenomenological enthalpy versus temperature diagram (and its derivative-DTA) for a better understanding of transition phenomena in glasses. Thermochim Acta. 280 /281 175190.

    • Search Google Scholar
    • Export Citation
  • 30.

    Šesták J . Glasses: phenomenology of non-isothermal glass formation and crystallization. In: Chvoj Z, Šesták J, Tříska A, editors. Kinetic phase diagrams: non-equilibrium phase transitions. Amsterdam: Elsevier; 1991. p. 164.

    • Search Google Scholar
    • Export Citation
  • 31.

    Thornburg, DD. 1974. Evaluation of glass formation tendency from rate dependent thermograms. Mater Res Bull. 9:14811485 .

  • 32.

    Saad, M, Poulain, M. 1987. Glass forming ability criterion. Mater Sci Forum. 19–20:1118 .

  • 33.

    Weinberg, MC. 1994. An assessment of glass stability criteria. Phys Chem Glass. 35:119123.

  • 34.

    Lu, ZP, Liu, CT. 2002. A new glass-forming ability criterion for bulk metallic glasses. Acta Mater. 50:35013512 .

  • 35.

    Lu ZP , Liu CT. Glass formation criteria for various glass-forming systems. Phys Rev Lett. 2003;91: 55045.

  • 36.

    Du XH , Huang JC, Liu CT, Lu ZP. New criterion of glass forming ability for bulk metallic glasses. J Appl Phys. 2007;101: 61868.

  • 37.

    Fan, GJ, Choo, H, Liaw, PK. 2007. A new criterion for the glass-forming ability of liquids. J Non-Cryst Solids. 353:102107 .

  • 38.

    Long, Z, Xie, G, Wei, H, Su, X, Peng, J, Zhang, P, Inoue, A. 2009. On the new criterion to assess the glass-forming ability of metallic alloys. Mater Sci Eng A. 509:2329 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Yuan, ZZ, Bao, SL, Lu, Y, Zhang, DP, Yao, L. 2008. A new criterion for evaluating the glass-forming ability of bulk glass forming alloys. J Alloys Comp. 459:251260 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Duan, RG, Liang, KM, Gu, SR. 1998. A new criterion for the stability of glasses. J Eur Ceram Soc. 18:11311144 .

  • 41.

    Iqbal, T, Shahriari, MR, Siegel, GG. 1991. A new glass forming ability criterion for multicomponent halide glasses. J Mater Sci Forum. 67–68:225232 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Zamečník J , Faltus M, Šesták J. Safekeeping parameter for safe storage of biological material at ultralow temperatures based on thermal characteristics. In: Cernosek Z, Cernoskova E, editors. International Czech and Slovak conference on calorimetry. Universita Pardubice; 2011. pp. 147150.

    • Search Google Scholar
    • Export Citation
  • 43.

    Weinberg, MC. 1994. Glass-forming ability and glass stability in simple systems. J Non-Cryst Solids. 167:8188 .

  • 44.

    Wunderlich, B. 2007. Glass transition as a key to identifying solid phases. J Appl Polym Sci. 105:4959 .

  • 45.

    Suga, H. 2000. Propects of material science: from crystalline to amorphous solids. J Thermal Anal Calorim. 60:5764 .

  • 46.

    Lasocka, M. 1976. The effect of scanning rate on glass transition temperature of splat-cooled Te85Ge15. Mater Sci Eng. 23:173175 .

  • 47.

    Avramov, I, Gutzow, I. 1988. Heating rate and glass transition temperature. J Non-Cryst Solids. 104:148150 .

  • 48.

    Černošek, Z, Holubová, J, Černošková, E. 2002. Enthalpy relaxation and the glass transition. J Optoelectron Adv Mater. 4:489503.

    • Search Google Scholar
    • Export Citation
  • 49.

    Hutchinson, JM. 2009. Determination of the glass transition temperature: methods correlation and structural heterogeneity. J Therm Anal Calorim. 98:579589 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Illeková, E. 1993. A generalized model of structural relaxation in metallic and chalcogenide glasses. Key Eng Mater. 81–83:541548 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Illeková, E. 1994. Review of structural relaxation models with the mutual correlation of their activation enthalpies. Int J Rapid Solidif. 8:195224.

    • Search Google Scholar
    • Export Citation
  • 52.

    Illeková, E, Clavaguera-Mora, MT, Baró, MD, Suriñach, S. 1994. Differential scanning calorimetry study of structural relaxation of Ge-doped Se85Te15 glasses. Mater Sci Eng. B22:181190 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Illeková, E, Cunat, Ch. 1994. An extended review of structural relaxation model with the mutual correlation of their parameters. J Non-Cryst Solids. 172–174:597600 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Illeková, E, Cunat, Ch, Kuhnast, FA, Aharoune, A, Fiorani, JM. 1992. Complex behaviour of specific heat during structural relaxation of Fe73Co12B15 glass. Thermochim Acta. 203:445455 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Šesták, J. 1986. Applicability of DTA and kinetic data reliability of non-isothermal crystallization of glasses. Thermochim Acta. 98:339358 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Chen, LC, Spaepen, F. 1991. Analysis of calorimetric measurements of grain growth. J Appl Phys. 69:679688 .

  • 57.

    Malek, J, Pustkova, P, Shanelova, J. 2003. Kinetic phenomena in non-crystalline materials studied by thermal analysis. J Thermal Anal Calorim. 72:289297 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Ranasinghe, KS, Wei, PF, Kelton, KF, Ray, CS, Day, DE. 2004. Verification of an analytical method for measuring crystal nucleation rates in glasses from DTA data. J Non-Cryst Solids. 337:261267 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Ranasinghe, KS, Ray, CS, Day, DE. 2002. A generalized method for determining the crystal nucleation and growth rates in glasses by DTA. J Mat Sci. 37:547555 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Šesták, J, Kozmidis-Petrovic, A, Živković, Ž. 2011. Crystallization kinetics accountability and the correspondingly developed glass-forming criteria. J Min Metall B Metall. 47:229239 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Cabral, AA C Fredericci Jr Zanotto, ED. 1997. A test of the Hrubÿ parameter to estimate glass-forming ability. J Non-Cryst Solids. 219:182186 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62.

    Avramov, I, Zanotto, ED, Prado, MO. 2003. Glass-forming ability versus stability of silicate glasses. II Theoretical demonstration. J Non-Cryst Solids. 320:920 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    Inoue, A, Zhang, T, Masumoto, T. 1993. Glass-forming ability of alloys. J Non-Cryst Solids. 156–158:473480 .

  • 64.

    Nascimento, MLF, Souza, LA, Ferreira, EB, Zanotto, ED. 2005. Can glass stability infer glass forming ability?. J Non-Cryst Solids. 351:32963310 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Cabral, AA, Cardoso, AAD, Zanotto, ED. 2003. Glass-forming ability versus stability of silicate glasses. I. Experimental test. J Non-Cryst Solids. 320:18 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    Nascimento, MLF, Dantas, NO. 2007. Assessment of glass-forming ability and the effect of La2O3 on crystallization mechanism of barium–lead–zinc phosphate glasses. Mater Lett. 61:912916 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67.

    Lu, ZP, Liu, CT. 2004. A new approach to understanding and measuring glass formation in bulk amorphous materials. Intermetallics. 12:10351043 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68.

    Sheng, WB. 2005. Correlations between critical section thickness and glass-forming ability criteria of Ti-based bulk amorphous alloys. J Non-Cryst Solids. 351:30813086 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69.

    Senkov, ON, Scott, JM. 2005. Glass forming ability and thermal stability of ternary Ca–Mg–Zn bulk metallic glasses. J Non-Cryst Solids. 351:30873094 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 70.

    Kozmidis-Petrovic, AF. 2010. Theoretical analysis of relative changes of the Hruby, Weinberg, and Lu–Liu glass stability parameters with application on some oxide and chalcogenide glasses. Thermochim Acta. 499:5460 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71.

    Mondal, K, Murty, BS. 2005. On the parameters to assess the glass forming ability of liquids. J Non-Cryst Solids. 351:13661371 .

  • 72.

    Zhang, P, Wei, H, Wei, X, Long, Z, Su, ZX. 2009. Evaluation of glass-forming ability for bulk metallic glasses based on characteristic temperatures. J Non-Cryst Solids. 355:21832189 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73.

    Kozmidis-Petrovic AF , Lukic SR, Siljegovic M. Theoretical analyses of the relative change of glass stability parameters with the application on some oxide and chalcogenide glasses from the system Bix(As2S3)100−x. Vancouver, Canada: PACRIM8-S23-082-2009; 2009.

    • Search Google Scholar
    • Export Citation
  • 74.

    Sharma, A, Barman, PB. 2009. Calorimetric and optical study of amorphous Se85−xTe15Bix glassy alloy. Thin Solid Films. 517:30203023 .

  • 75.

    Abdel-Rahim, MA, El-Korashy, A, Hafiz, MM, Mahmoud, AY. 2008. Kinetic study of non-isothermal crystallization of BixSe100−x chalcogenide glasses. Phys B. 403:29562962 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76.

    Kozmidis-Petrovic, AF. 2010. Sensitivity of the Hruby, Lu–Liu, Fan, Yuan, and Long glass stability parameters to the change of the ratios of characteristic temperatures Tx/Tg and Tm/Tg. Thermochim Acta. 510:137144 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 77.

    Kozmidis-Petrovic, AF. 2011. Which glass stability criterion is the best?. Thermochim Acta. 523:116123 .

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2021 0 0 0
Jun 2021 1 0 0
Jul 2021 1 0 0
Aug 2021 5 0 0
Sep 2021 5 0 0
Oct 2021 1 0 0
Nov 2021 0 0 0