Authors:
Abraham George Department of Chemistry, Mar Ivanios College, University of Kerala, Thiruvananthapuram 695015, India

Search for other papers by Abraham George in
Current site
Google Scholar
PubMed
Close
and
P. T. Seena Department of Chemistry, Mar Ivanios College, University of Kerala, Thiruvananthapuram 695015, India

Search for other papers by P. T. Seena in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Zirconium hydroxide gel has been prepared by a novel aqueous gelation process by the controlled hydrolysis of zirconium oxychloride in the presence of sodium acetate. The gel thus formed has been subjected to thermal analysis: TG, DTG, and DSC. Thermal analysis shows that the gel is continuously dehydrated in the temperature range between room temperature and 500 °C. The total mass loss relative to the initial mass is about 44.1%. Thermal analysis shows that the decomposition takes place in three stages. The gel contains absorbed and coordinated water. In the second stage of dehydration, dehydration of the Zr(OH)4 gel also takes place along with the removal of the coordinated water. The DSC analysis coupled with TG and structural information, indicate that the exothermic processes between 349 and 460 °C can be attributed to the nucleation process of the formation of tetragonal zirconia, with phase transformation at 460 °C.

  • 1.

    Aramendia, MA, Borau, V, Jimenez, C, Marinas, JM, Porras, A, Urbano, FJ. 1997. Synthesis and characterization of ZrO2 as an acid-base catalyst: dehydration-dehydrogenation of propan-2-ol. J Chem Soc Faraday Trans. 93:1431 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Kaspar, J, Fornasiero, P, Graziani, M. 1999. Use of CeO2-based oxides in the three-way catalysis. Catal Today. 50:285 .

  • 3.

    Shayachmetov, U, Dranca, I. 2001. Use of methods of thermal analysis in studying ceramic materials on the basis of Al2O3, ZrO2, Si3N4 SiC and inorganic binder. J Therm Anal Calorim. 64:11531161 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Gao, P, Meng, LJ, dos Santos, MP, Teixeira, V, Andritschky, M. 2000. Study of ZrO2–Y2O3 films prepared by magnetron reactive sputtering. Thin Solid Films. 32:377.

    • Search Google Scholar
    • Export Citation
  • 5.

    Xinlong, Wang, Lianghu, Wu, Jin Li, J. 2011. Synergistic flame retarded poly (methyl methacrylate) by nano-ZrO2 and triphenylphosphate. J Therm Anal Calorim. 103:741746 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Davis, H. 1996. Effect of pH on crystal phase of ZrO2 precipitated from solution and calcined at 600 °C. J Am Ceram Soc. 67:168.

  • 7.

    Nair, AS, Renjis, TTom, Suryanarayanan, V, Pradeep, T. 2003. ZrO2 bubbles from core shell nanoparticles. J Mater Chem. 13:97 .

  • 8.

    Somiya, S, Akiba, T. 1999. Hydrothermal zirconia powders: a bibliography. J Eur Ceram Soc. 19:81 .

  • 9.

    Picquart, M, López, T, Gómez, R, Torres, E, Moreno, A, Garcia, J. 2004. Dehydration and crystallization process in sol–gel zirconia: thermal and spectroscopic study. J Therm Anal Calorim. 76:755 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Santos, V, Zeni, M, Bergmann, CP, Hohemberger, JM. 2008. Correlation between thermal treatment and tetragonal/monoclinic nanostructured zirconia powder obtained by sol–gel process. Adv Mater Sci. 17:62.

    • Search Google Scholar
    • Export Citation
  • 11.

    Garrido Pedrosa, AM, Souza, MJB, Lima, SH, Dulce, MAMelo, Souza, AG, Araujo, AS. 2007. Influence of the synthesis methods of the DTG-TPR profiles of Pt/WOx-ZrO2 bifunctional catalysts. J Therm Anal Calorim. 87:703707 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Colon, G, Aviles, MA, Navio, JA, Sanchez-Soto, PJ. 2002. Thermal behaviour of TiO2-ZrO2 microcomposite prepared by chemical coating. J Therm Anal Calorim. 67:229238 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Jakubus, P, Adamski, A, Kurzawa, M, Sojka, Z. 2003. Texture of Zirconia obtained by forced hydrolysis of ZrOCl2 solutions influence of aging on thermal behaviour. J Thermal Anal Calorim. 72:299310 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Sato, Taichi. 2005. Thermal decomposition of zirconium oxyhydroxide. J Therm Anal Calorim. 69:255 .

  • 15.

    Strizhak, PE, Tripol'skii, AI, Gurnik, TN, Tuzikov, FV, Moroz, ÉM, Konstantinova, TE, Tuzikova, NA, Kol'ko, VP, Danilenko, IA, Gorban, OA. 2008. Effect of temperature on the structural characteristics of zirconium dioxide nanoparticles produced under conditions of microwave treatment. Theor Exp Chem. 44:144 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Rendtorff, NM, Suarez, G, Sakka, Y, Aglietti, EF. 2011. Thermal behaviour of mullite-Zirconia–Zircon composites influence of Zirconia phase transformation. J Thermal Anal Calorim. 104:569576 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Hao, Zhang, Yulong, LU, Zhu, Ke, Siu, Guigu, Xiong, Yonghong, Cao shui, Xiong. 1999. Infrared spectra of nano metre granular Zirconia. J Phys Condens Matter. 11:2035 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Ali, A. 2002. HT-XRD, IR, Raman characterization studies of metastable phases emerging in the thermal genesis course of monoclinic zirconia via amorphous zirconium hydroxide: impacts of sulfate and phosphate additives. Thermochim Acta. 387:29 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Palaniswami, Manivasakan, Venkadachalam, Rajendran, PremaRenjan, Ranta. 2011. Synthesis of monoclinic and cubic ZrO2 nanoparticles from zircon. J Am Ceram Soc. 94:1410 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Jayakumar, S, Ananthapadmanabhan, PV, Perumal, K, Thiyagarajan, TK, Mishra, SC, Su, LT, Tok, AIY, Guo, J. 2011. Characterization of nano-crystalline ZrO2 synthesized via reactive plasma processing. Mater Sci Eng. 176:894 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Sharikov, FYu, Almjasheva, OV, Gusarov, VV. 2006. Thermal analysis of formation of ZrO2 nanoparticles under hydrothermal conditions. Rus J Inorg Chem. 51:1538 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Tahir, Ahamed, Othman, Mamat. 2001. The development and characterization of zirconia-silica sand nanoparticles composites. World J Nanosci Eng. 1:7.

    • Search Google Scholar
    • Export Citation
  • 23.

    PDF # 501089 and PDF # 371484.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2024 19 0 0
May 2024 4 0 0
Jun 2024 24 1 1
Jul 2024 56 5 5
Aug 2024 37 0 0
Sep 2024 20 2 2
Oct 2024 24 0 0