View More View Less
  • 1 Laboratoire de Chimie Organique, Macromoléculaire et des Matériaux, Université de Mascara, Bp 763, 29000, Mascara, Algeria
  • | 2 Departamento de Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Apartado 99, 03080, Alicante, Spain
  • | 3 Departamento de Ingeniería Textil Y Papelera, Universidad Politécnica de Valencia, Pza Ferrandiz i Carbonel, 03801, Alcoy (Alicante), Spain
  • | 4 Departement de Chimie, Université de Sidi Belabas, 22000, Sidi Belabas, Algeria
Restricted access

Abstract

The adsorption of lead (II) ions on three Algerian montmorillonites (sodium, non-sodium, and acidic-activated) was studied. Transmission electron microscopy coupled with energy dispersive X-ray analysis, X-ray fluorescence and physical adsorption of gases were used to characterize the clays. This characterization has shown than the activation with acid increases the surface area as a consequence of the rupture of the laminar structure. The effect of the pH in the lead adsorption capacity was analyzed. The results show that adsorption is strongly depended on the pH. At low pH values, the mechanism that governs the adsorption behavior of clays is the competition of the metal ions with protons. Between pH 2 and 6, the main mechanism is an ion exchange process. The kinetics of the adsorption is tested with respect to pseudo-first-order and second-order models. The adsorption process, gives a better fit with the Langmuir isotherm, being the monolayer capacity ranging between 18.2 and 24.4 mg g−1. The adsorption of lead decreased in the order Acidic-M2 > M2 > M1. Thermodynamic parameters such as ΔH, ΔS, and ΔG were calculated. The adsorption process was found to be endothermic and spontaneous. The enthalpy change for Pb(II) by M1 adsorption has been estimated as 60 kJ mol−1, indicating that the adsorption of Pb(II) by all montmorillonites used corresponds to a physical reaction. The adsorption capacity of washed Acidic-M2 was very high compared to M2 and M1.

  • 1.

    Patterson, JW. 1985 Industrial wastewater treatment technology Butterworth-Heinemann New York.

  • 2.

    Adebowale, KO, Unuabonah, IE, Olu-Owolabi, BI. 2006. The effect of some operating variables on the adsorption of lead and cadmium ions on kaolinite clay. J Hazard Mat. 34:130139 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Vogel, C, Adam, C, Unger, M. 2011. Heavy metal removal from sewage sludge ash analyzed be thermogravimetry. J Therm Anal Calorim. 103:243248 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Adebowale, KO, Unuabonah, IE, Olu-Owolabi, BI. 2008. Kinetic and thermodynamic aspects of the adsorption of Pb2+ and Cd2+ ions on tripolyphosphate-modified kaolinite clay. Chem Eng. J. 136:99107 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Arfaoui, S, Frini-Srasra, N, Srasra, E. 2005. Application of clays to treatment of tannery sewages. Desalination. 185:419424 .

  • 6.

    Sakizci, M, Alver, BE, Yörükoğullari, E. 2011. Termal and SO2 adsorption properties of some clays from Turkey. J Therm Anal Calorim. 103:435441 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Celis, R, Hermosín, MC, Cornejo, J. 2000. Heavy metal adsorption by functionalized clays. Environ Sci Technol. 34:45934599 .

  • 8.

    Molina, R, Vieiera-Coelho, A, Poncelet, G. 1992. Hydroxy-Al pillaring of concentrated clay suspensions. Clay Clay Miner. 40:480482 .

  • 9.

    Oubagaranadin, JUK, Murthy, ZVP. 2009. Adsorption of divalent lead on a montmorillonite-illite type of clay. Ind Eng Chem Res. 48:1062710636 .

  • 10.

    Singh, SP, Ma, LQ, Hendry, MJ. 2006. Characterization of aqueous lead removal by phosphatic clay: equilibrium and kinetic studies. J. Hazard Mater. 136:654662 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Mahbouba, R, El Mouzdahir, Y, Elmchaouri, A, Carvalho, A, Pinto, M, Pires, J. 2006. Characterization of a delaminated clay and pillared clays bynadsorption of probe molecules. Colloids Surf A. 280:8187 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Gok, ASzcan, zcan, A. 2009. Adsorption of lead(II) ions onto 8-hydroxy quinoline-immobilized bentonite. J. Hazard Mater. 161:499509 .

  • 13.

    Schoonheydt, RA, Pinnavaia, T, Lagaly, G, Gangas, N. 1999. Pillared clays and pillared layered solids. Pure Appl Chem. 71:23672371 .

  • 14.

    Stoch, L, Bahranowski, K, Budek, L, Fijal, J. 1977 Mineral Pol. 8:3137.

  • 15.

    Srivastava, SK, Tyagi, R, Pant, N, Pal, N. 1989. Studies on the removal of some toxic metal ions, Part II. Removal of lead and cadmium by montmorillonite and kaolinite. Environ Technol Let. 10:275282 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Orumwense, FFO. 1996. Removal of lead from water by adsorption on a kaolinitic clay. J Chem Technol Biotechnol. 65:363369 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Chantawong, V, Harvey, NW, Bashkin, VN. 2001. Adsorption of lead nitrate on Thai kaolin and ballclay. Asian J Energy Environ. 2:3348.

    • Search Google Scholar
    • Export Citation
  • 18.

    Lapides, I, Yari, S. 2009. Thermo-X-ray-diffraction analysis of dimethylsulfoxide-kaolinite intercalation complexes. J Therm Anal Calorim. 97:219 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Echeverría, JC, Zarranz, I, Estella, J, Garrido, JJ. 2005. Simultaneous effect of pH, temperature, ionic strength, and initial concentration on the retention of lead on illite. Appl Clay Sci. 30:103115 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Naseem, R, Tahir, SS. 2001. Removal of Pb(II) from aqueous/acidic solutions by using bentonite as an adsorbent. Water Res. 35:39823986 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Donat, R, Akdogan, A, Erdem, E, Cetisli, H. 2005. Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions. J Colloid Interface Sci. 286:4352 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Cicmanec, P, Bulánek, R, Frolich, K. 2011. Thermodynamics of CO probe molecule adsorption on Cu–FER-zeolite comparison of TPD, FTIR, and microcalorimetry results. J Therm Anal Calorim. 105:837884 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Zamzow, MJ, Eichbaum, BR, Sandgren, KR, Shanks, DE. 1990. Removal of heavy metals and other cations from wastewater using zeolites. Sep Sci Technol. 25:15551569 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Ouki, SK, Cheeseman, C, Perry, R. 1993. Effects of conditioning and treatment of chabazite and clinoptilolite prior to lead and cadmium removal. Environ Sci Technol. 27:11081116 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Brigatti, MF, Lugli, C, Poppi, L. 2000. Kinetics of heavy-metal removal and recovery in sepiolite. Appl Clay Sci. 16:4557 .

  • 26.

    Bektas, N, Agım, BA, Kara, S. 2004. Kinetic and equilibrium studies in removing lead ions from aqueous solutions by natural sepiolite. J Hazard Mat. 112:115122 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Juang, RS, Lin, SH, Tsao, KH. 2002. Mechanism of sorption of phenols from aqueous solutions onto surfactant-modified montmorillonite. J Colloid Interface Sci. 254:234241 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Alberga, L, Holm, T, Tiravanti, G, Petruzzelli, D. 1994. Electrochemical determination of cadmium sorption on kaolinite. Environ Technol. 15:245254 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Tiller, KG, Gerth, J, Brümmer, G. 1984. The sorption of Cd, Zn and Ni by soil clay fractions: procedures for partition of bound forms and their interpretation. Geoderma. 34:116 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Stadler, M, Schindler, PW. 1993. The effect of dissolved ligands upon the sorption of Cu(II) by Ca-montmorillonite. Clays Clay Miner. 41:680692 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Belbachir M , Bensaoula A. US Patent 2001;No. 6, 274, 527 B1.

  • 32.

    Lozano-Castelló, D, Suárez-García, F, Cazorla-Amorós, D, Linares-Solano, A. 2009. Porous texture of carbons F Beguin E Frackowiak eds. Carbons for electrochemical energy storage and conversion systems CRC Press Florida 115162 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Cazorla-Amorós, D, Alcañiz-Monge, J, Linares-Solano, A. 1996. Characterization of activated carbon fibers by CO2 adsorption. Langmuir. 12:28202824 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Cazorla-Amorós, D, Alcañiz-Monge, J MA de la Casa-Lillo Linares-Solano, A. 1998. CO2 as an adsorptive to characterize carbon molecular sieves and activated carbons. Langmuir. 14:45894596 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Gu, B, Schmitt, J, Chen, Z, Liang, L, McCarthy, JF. 1995. Adsorption and desorption of different organic matter fractions on iron oxide. Geochim Cosmochim Acta. 59:219229 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Kul, AR, Koyunchu, H. 2010. Heavy metal removal from municipal solid waste fly ash by chlorination and thermal treatment. J. Hazard Mater. 179:332339 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Ho, YS, McKay, G. 1999. Pseudo-second order model for sorption processes. Process Biochem. 34:451465 .

  • 38.

    Sing, K, Everet, D, Haul, R, Moscou, L, Pierotty, R, Rouquerol, J, Siemieniewska, T. 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem. 57:603619 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Temuulin, J, Jadambaa, Ts, Burmaa, G, Erdenechimeg, Sh, Amarsanaa, J, MacKenzie, KJD. 2004. Characterisation of acid activated montmorillonite clay from Tuulant (Mongolia). Ceram Int. 30:251255 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Noyan, H, Onal, M, Sarikaya, Y. 2007. The effect of sulphuric acid activation on the crystallinity, surface area, porosity, surface acidity, and bleaching power of a bentonite. Food Chem. 105:156163 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Huang, FC, Lee, FJ, Lee, CK, Chao, HP. 2004. Effects of cation exchange on the pore and surface structure and adsorption characteristics of montmorillonite. Colloid Surf A. 239:4147 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Treybal, RE. 1981 Mass-transfer operation, 3rd ed McGraw-Hill Tokyo.

  • 43.

    Elliot, HA, Huang, CP. 1981. Adsorption characteristics of some Cu(II) complexes on aluminosilicates. Water Res. 15:849855 .

  • 44.

    Unuabonah, EI, Adebowale, KO, Olu-Owolabi, BI, Yang, LZ, Kong, LX. 2008. Adsorption of Pb(II) and Cd(II) from aqueous solutions onto sodium tetraborate-modified Kaolinite clay: equilibrium and thermodynamic studies. Hydrometallurgy. 93:19 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Volesky, B, Holan, ZR. 1995. Biosorption of heavy metals. Biotechnol Prog. 11:235250 .

  • 46.

    Adebowale, KO, Unuabonah, IE, Olu-Owolabi, BI. 2006. The effect of some operating variables on the adsorption of lead and cadmium ions on kaolinite clay. J Hazard Mater. 134:130139 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Jiang, M, Jin, X, Lu, X, Chen, Z. 2010. Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay. Desalination. 252:3339 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Hefne, JA, Mekhemer, WK, Alandis, NM, Aldayel, OA, Alajyan, T. 2008. Kinetic and thermodynamic study of the adsorption of Pb(II) from aqueous solution to the natural and treated bentonite. Int J Phys Sci. 3:281288.

    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 1 0 0
May 2021 0 0 0
Jun 2021 1 0 0
Jul 2021 0 0 0
Aug 2021 2 0 0
Sep 2021 4 1 0
Oct 2021 0 0 0