View More View Less
  • 1 Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Blvd. de l’ Université, Sherbrooke, QC, J1K 2R1, Canada
Restricted access

Abstract

A standard procedure for thermogravimetric analysis (TG) of carbonaceous materials including single-walled carbon nanotubes was developed based on a statistical design to precisely study the effect of three main TG parameters: temperature ramp (TR, °C), initial mass (IM) of the sample (mg), and the rate of flowing gas (sccm) on the TG results. In addition, the effect of sampling including sample morphology and moisture content on TG were studied. The results of statistical design clearly showed that TG was affected by these three parameters and particularly by IM and TR. Interestingly, it was observed that the TG results are affected insufficiently by the sample morphology and low moisture content. This study also confirmed the potential of TG combined with high-resolution scanning electron microscopy to be a simple and straightforward method for purity evaluation of SWCNT-containing samples with a complex TG behavior such as those of induction thermal plasma grown. A complementary study on nano-metric catalysts indicated that these types of materials enable to gain or loss mass in an oxidative ambient during TG. A mass loss of 6% and a mass gain of 23% were observed for pure nano-metric yttrium oxide and nickel, respectively. A simple calculation showed a total mass gain of 1 wt% particularly by the catalysts in the SWCNT sample during TG.

  • 1.

    Martins, EPS, Botelho, JR, Oliveira, SF, Arakaki, LNH, Fonseca, MG, Espínola, JGP. 2009. Thermal decomposition study of antimony (III) tribromide and aromatic amine adducts. J Therm Anal Calorim. 97:427431 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Howell, BA, Cho, Y-J. 2010. Thermal decomposition of 2,4,4,5,5-pentaphenyl-1,3,2-dioxaphospholane. J Therm Anal Calorim. 102:517521 .

  • 3.

    Yoshino, S, Miyake, A. 2010. Thermal decomposition properties of 1,2,4-triazole-3-one and guanidine nitrate mixtures. J Therm Anal Calorim. 102:513516 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Howell, BA, Chhetri, P, Dumitrascu, A, Stanton, KN. 2010. Thermal degradation of platinum(IV) precursors to antitumor drugs. J Therm Anal Calorim. 102:499503 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Sato, Y, Funakoshi, A, Okada, K, Akiyoshi, M, Matsunaga, T, Koyama, S, Ozawa, M, Suzuki, T. 2009. Study on thermal stability of tertiary pyridine resin. J Therm Anal Calorim. 97:297302 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Corradini, E, Teixeira, EM, Paladin, PD, Agnelli, JA, Silva, ORRF, Mattoso, LHC. 2009. Thermal stability and degradation kinetics study of white and colored cotton fibers by thermogravimetric analysis. J Therm Anal Calorim. 97:415419 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Howell, BA, Carter, KE. 2010. Thermal stability of phosphinated diethyl tartrate. J Therm Anal Calorim. 102:493498 .

  • 8.

    Iijima, S, Ichihashi, T. 1993. Single-sell carbon nanotubes of 1-nm diameter. Nature. 363:737 .

  • 9.

    Park, YS, Kim, KS, Jeong, HJ, Kim, WS, Moon, JM, An, KH, Bae, DJ, Lee, YS, Park, GS, Lee, YH. 2002. Low pressure synthesis of single-walled carbon nanotubes by arc discharge. Synth Met. 126:245251 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Shi, Z, Lian, Y, Liau, FH, Zhou, X, Gu, Z, Zhang, Y, Ijima, S, Li, H, Yue, KT, Zhang, S-L. 2000. Large scale synthesis of single-walled carbon nanotubes by arc-discharge method. J Phys Chem Solids. 61:10311036 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Kingston, CT, Jakubek, ZJ, Dénommée, S, Simard, B. 2004. Efficient laser synthesis of single-walled carbon nanotubes through laser heating of the condensing vaporization plume. Carbon. 42:16571664 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Rinzler, AG, Liu, J, Dai, H, Nikolaev, P, Huffman, CB, Rodriguez-Maias, FJ, Boul, PJ, Lu, AH, Heymann, D, Colbert, DT, Lee, RS, Fischer, JE, Rao, AM, Eklund, PC, Smalley, RE. 1998. Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl Phys A. 67:2937 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Su, M, Zheng, B, Liu, J. 2000. A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity. Chem Phys Lett. 322:321326 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Murakami, Y, Miyauchi, Y, Chiashi, S, Maruyama, S. 2003. Characterization of single-walled carbon nanotubes catalytically synthesized from alcohol. Chem Phys Lett. 374:5358 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Kim, KS, Cota-Sanchez, G, Kingston, CT, Imris, M, Simard, B, Soucy, G. 2007. Larg-scale production of single-walled carbon nanotubes by induction thermal plasma. J Phys D. 40:23752388 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Wendlandt, WW. 1986 Thermal analysis 3 Wiley New York.

  • 17.

    Kim, KS, Moradian, A, Mostaghimi, J, Alinejad, Y, Shahverdi, A, Simard, B, Soucy, G. 2009. Synthesis of single-walled carbon nanotubes by induction thermal plasma. Nano Res. 2:800817 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Poole, CP, Owens, FJ. 2003 Introduction to nanotechnology 1 Wiley Hoboken.

  • 19.

    Kim, KS, Imris, M, Shahverdi, A, Alinejad, Y, Soucy, G. 2009. Single-walled carbon nanotubes prepared by large-scale induction thermal plasma process: synthesis, characterization and purification. J Phys Chem C. 113:43404348 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Bokova, MN, Decarne, C, Abi-Aad, E, Pryakhin, AN, Lunin, VV, Aboukaïs, A. 2005. Kinetics of catalytic carbon black oxidation. Thermochim Acta. 428:16171 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Ciambelli, P, D'Amore, M, Palma, V, Vaccaro, S. 1994. Catalytic oxidation of an amorphous carbon black. Combust Flame. 99:413421 .

  • 22.

    Cho, HG, Kim, SW, Lim, HJ, Yun, CH. 2009. A simple and highly effective process for the purification of single-walled carbon nanotubes synthesized with arc-discharge. Carbon. 47:35443549 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Harutyunyan, AR, Pradhan, BK, Chang, J, Chen, G, Eklund, PC. 2002. Purification of single-wall carbon nanotubes by selective microwave heating of catalyst particles. J Phys Chem B. 106:86718675 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Shi, Z, Lian, Y, Liao, F, Zhou, X, Gu, Z, Zhang, Y, Ijima, S. 1999. Purification of single-walled carbon nanotubes. Solid State Commun. 112:3537 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Scaccia, S, Carewska, M, Prosini, PP. 2005. Study of purification process of single-walled carbon nanotubes by thermoanalytical techniques. Thermochim Acta. 435:209212 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Landi, BJ, Cress, CD, Evans, CM, Raffaelle, RP. 2005. Thermal oxidation profiling of single-walled carbon nanotubes. Chem Mater. 17:68196834 .

  • 27.

    Borowiak-Palen, E, Pichler, T, Liu, X, Knupfer, M, Graff, A, Jost, O, Pompe, W, Kalenczuk, RJ, Fink, J. 2002. Reduced diameter distribution of single-walled carbon nanotubes by selective oxidation. Chem Phys Lett. 363:567572 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 2 1 0
May 2021 0 0 0
Jun 2021 3 0 0
Jul 2021 0 0 0
Aug 2021 0 0 0
Sep 2021 1 1 1
Oct 2021 0 0 0