View More View Less
  • 1 Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, People's Republic of China
  • | 2 School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
Restricted access

Abstract

The aim of this study is to investigate the melting/freezing characteristics of paraffin by adding Cu nanoparticles. Cu/paraffin composite phase change materials (PCMs) were prepared by a two-step method. The effects of Cu nanoparticles on the thermal conductivity and the phase change heat transfer of PCMs were investigated by the Hot Disk thermal constants analyzer and infrared monitoring methods, respectively. The maximum thermal conductivity enhancements up to 14.2% in solid state and 18.1% in liquid state are observed at the 2 wt% Cu/paraffin. The photographs of infrared monitoring suggest that the melting and freezing rates of Cu/paraffin are enhanced. For 1 wt% Cu/paraffin, the melting and freezing times can be saved by about 33.3 and 31.6%, respectively. The results provide that adding nanoparticles is an efficient way to enhance the phase change heat transfer of PCMs.

  • 1.

    Patrice, P, Cynthia, AC, Ian, BM, Adam, W. 2011. A review of available methods for seasonal storage of solar thermal energy in residential applications. Renew Sust Energ Rev. 15 7 33413359 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Nithyanandam, K, Pitchumani, R. 2011. Analysis and optimization of a latent thermal energy storage system with embedded heat pipes. Int J Heat Mass Tranf. 54 21–22 45964610 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Kousksou, T, Jamil, A, Rhafiki, TE, Zeraouli, Y. 2010. Paraffin wax mixtures as phase change materials. Sol Energy Mat Sol C. 94 12 21582165 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Zhong, YJ, Li, SZ, Wei, XH, Gao, XQ, Shi, JL, Guo, QG, Liu, L. 2010. Carbon matrices with different pore structures as heat transfer intensifier in paraffin wax/carbon thermal energy storage system. Carbon. 48 5 16951795 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Xiang, J, Drzal, LT. 2011. Investigation of exfoliated graphite nanoplatelets (xGnP) in improving thermal conductivity of paraffin wax-based phase change material. Sol Energy Mat Sol C. 95 7 18111818 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Agyenim, F, Hewitt, N, Eames, P, Smyth, M. 2010. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew Sust Energ Rev. 14 2 615628 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Ermis, K, Erek, A, Dincer, I. 2007. Heat transfer analysis of phase change process in a finned-tube thermal energy storage system using artificial neural network. Int J Heat Mass Tran. 50 15–16 31633175 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Wang N , Zhang XR, Zhu DS, Gao JW. The investigation of thermal conductivity and energy storage properties of graphite/paraffin composites. J Therm Anal Calorim. 2011. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Mettawee, EBS, Assassa, GMR. 2007. Thermal conductivity enhancement in a latent heat storage system. Sol Energy. 81:839845 .

  • 10.

    Gao, JW, Zheng, RT, Ohtani, H, Zhu, DS, Chen, G. 2009. Experimental investigation of heat conduction mechanisms in nanofluids. Clue on clustering. Nano Lett. 9 12 41284132 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Zeng, JL, Sun, LX, Xu, F, Tan, ZC, Zhang, ZH, Zhang, J, Zhang, T. 2007. Study of a PCM based energy storage system containing Ag nanoparticles. J Therm Anal Calorim. 87 2 369373 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Zeng, JL, Cao, Z, Yang, DW, Sun, LX, Zhang, L. 2010. Thermal conductivity enhancement of Ag nanowires on an organic phase change material. J Therm Anal Calorim. 101 1 385389 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Zeng, JL, Cao, Z, Yang, DW, Xu, F, Sun, LX, Zhang, XF, Zhang, L. 2009. Effects of MWNTs on phase change enthalpy and thermal conductivity of a solid-liquid organic PCM. J Therm Anal Calorim. 95 2 507512 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Ho, CJ, Gao, JY. 2009. Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material. Int Commun Heat Mass. 36 5 467470 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Hong, Y, Ding, SJ, Wu, W, Hu, JJ, Voevodin, AA, Gschwender, L, Snyder, E, Chow, L, Su, M. 2010. Enhancing heat capacity of colloidal suspension using nanoscale encapsulated phase-change materials for heat transfer. Acs Appl Mat Interfaces. 2 6 16851691 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Wang, JF, Xie, HQ, Xin, Z. 2009. Thermal properties of paraffin based composites containing multi-walled carbon nanotubes. Thermochim Acta. 488 1–2 3942 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Fan L . Enhanced thermal conductivity and expedited freezing of nanoparticle suspensions utilized as novel phase change materials. Alabama: Auburn University; 2011.

    • Search Google Scholar
    • Export Citation
  • 18.

    Cui, Y, Liu, CH, Yu, X. 2011. The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials. Sol Energy Mat Sol C. 95 4 12081212 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Liu, YD, Zhou, YG, Tong, MW, Zhou, XS. 2009. Experimental study of thermal conductivity and phase change performance of nanofluids PCMs. Microfluid Nanofluid. 7 4 579584 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Khodadadi, JM, Hosseinizadeh, SF. 2007. Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage. Int Commun Heat Mass. 34 5 534543 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Guo, CX. 2011. Application study of nanoparticle-enhanced phase change material in ceiling board. Adv Mater Res. 150:723726 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Wu, SY, Zhu, DS, Zhang, XR, Huang, J. 2010. Preparation and melting/freezing characteristics of Cu/paraffin nanofluid as phase-change material (PCM). Energ Fuel. 24:18941898 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Wu, SY, Zhu, DS, Li, XF, Li, H, Lei, JX. 2009. Thermal energy storage behavior of Al2O3–H2O nanofluids. Thermochim Acta. 483 1–2 7377 .

  • 24.

    Instruction Manual: hot disk thermal constants analyzer. Hot Disk Inc.; 2004.

  • 25.

    Ma, RS, Fang, RS. 1986 Practical thermophysical property manual China Agriculture Machine Press Beijing (in Chinese).

  • 26.

    Karaipekli, A, Sari, A. 2009. Preparation, thermal properties and thermal reliability of palmitic acid-expanded graphite composite as form-stable PCM for thermal energy storage. Sol Energy Mat Sol C. 93:571576 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Das, SK. 2006. Nanofluids—the cooling medium of the future. Heat Transfer Eng. 27 10 12 .

  • 28.

    Frusteri, F, Leonardi, V, Vasta, S, Restuccia, G. 2005. Thermal conductivity measurement of a PCM based storage system containing carbon fibers. Appl Therm Eng. 25 11–12 16231633 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Karaman, S, Karaipekli, A, Sari, A, Bicer, A. 2011. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage. Sol Energy Mat Sol C. 95 7 16471653 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)