Authors:
Yan Li Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, People's Republic of China
Graduate School of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China

Search for other papers by Yan Li in
Current site
Google Scholar
PubMed
Close
,
Xiaojun Wang Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, People's Republic of China

Search for other papers by Xiaojun Wang in
Current site
Google Scholar
PubMed
Close
, and
Juanfang Wang Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, People's Republic of China

Search for other papers by Juanfang Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Na-montmorillonites were exchanged with Li+, K+, Rb+, Cs+, Mg2+, Ca2+, Sr2+, and Ba2+, while Ca-montmorillonites were treated with alkaline and alkaline earth ions except for Ra2+ and Ca2+. Montmorillonites with interlayer cations Li+ or Na+ have remarkable swelling capacity and keep excellent stability. It is shown that metal ions represent different exchange ability as follows: Cs+ > Rb+ > K+ > Na+ > Li+ and Ba2+ > Sr2+ > Ca2+ > Mg2+. The cation exchange capacity with single ion exchange capacity illustrates that Mg2+ and Ca2+ do not only take part in cation exchange but also produce physical adsorption on the montmorillonite. Although interlayer spacing d001 depends on both radius and hydration radius of interlayer cations, the latter one plays a decisive role in changing d001 value. Three stages of temperature intervals of dehydration are observed from the TG/DSC curves: the release of surface water adsorbed (36–84 °C), the dehydration of interlayer water and the chemical-adsorption water (47–189 °C) and dehydration of bound water of interlayer metal cation (108–268 °C). Data show that the quantity and hydration energy of ions adsorbed on montmorillonite influence the water content in montmorillonite. Mg2+-modified Na-montmorillonite which absorbs the most quantity of ions with the highest hydration energy has the maximum water content up to 8.84%.

  • 1.

    Bayram, H, Önal, M, Yilmz, H, Sarikaya, Y. 2010. Thermal analysis of a white calcium bentonite. J Therm Anal Calorim. 101:873879 .

  • 2.

    Varma, RS. 2002. Clay and clay supported reagents in organic synthesis. Tetrahedron. 58:12351255 .

  • 3.

    Ma, YJ. 2007. The resource, properties, utilization of bentonites. Food Chem. 105:156163 .

  • 4.

    Pacula, A, Bielan’ ska, EL, Gawel, A, Bahranowski, K, Serwicka, EM. 2006. Textural effects in powdered montmorillonite induced by freeze-drying and ultrasound pretreatment. Appl Clay Sci. 32:6473 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Sternik, D, Majdan, M, Derylo-Marczewska, A. 2011. Influence of basic red 1 dye adsorption on thermal stability of Na-clinoptilolite and Na-bentonite. J Therm Anal Calorim. 103:607615 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Bhattacharyya, KG, Gupta, SS. 2007. Adsorptive accumulation of Cd(II), Co(II), Cu(II), Pb(II), and Ni(II) from water on montmorillonite: influence of acid activation. J Colloid Interface Sci. 310:411424 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Lu, LF, Frost, RL, Cai, JG. 2010. Desorption of benzoic and stearic acid adsorbed upon montmorillonites: a thermogravimetric study. J Therm Anal Calorim. 99:377384 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Lu, LF, Cai, JG, Frost, RL. 2010. Desorption of stearic acid upon surfactant adsorbed montmorillonite. J Therm Anal Calorim. 100:141144 .

  • 9.

    Souza, CEC, Nascimento, RSV. 2008. Adsorption behavior of cationic polymers on bentonite. J Therm Anal Calorim. 94:579583 .

  • 10.

    Wu, PX, Zhang, Q, Dai, YP. 2011. Adsorption of Cu (II), Cd (II) and Cr(III) ions from aqueous solutions on humic acid modified Ca-montmorillonite. Geoderma. 164:215219 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Green, RC. 2010. Effect of salinity and temperature on the adsorption of Hg(II) from aqueous solutions by a Ca-montmorillonite. Appl Clay Sci. 50:1218 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Ghayaza, M, Le, FL, Muller, F. 2011. Pb(II) and Zn(II) adsorption onto Na- and Ca-montmorillonites in acetic acid/acetate medium: experimental approach and geochemical modeling. J Colloid Interface Sci. 361:238246 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Panasyugin, AS, Bondareva, GV, Rat'ko, AI. 2004. Adsorption of ammonia and sulfur dioxide by sorbents based on modified montmorillonite. Russ J Appl Chem. 77:846847 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Bhattacharyya, KG, Gupta, SS. 2006. Kaolinite, montmorillonite, and their modified derivatives as adsorbents for removal of Cu (II) from aqueous solution. Sep Purif Technol. 50:388397 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Mohamed, MH, Khaled, SAES, Nayef, SAM. 2010. Immobilization of methylene blue onto bentonite and its application in the extraction of mercury (II). J Hazard Mater. 178:94100 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Inoue, A, Minato, H. 1979. Ca–K exchange reaction and interstratification in montmorillonite. Clays Clay Min. 27:393401 .

  • 17.

    Rytwo, G, Banin, A, Nir, S. 1996. Exchange reactions in the Ca–Mg–Na-montmorillonite system. Clays Clay Min. 44:276285 .

  • 18.

    Huertas, FJ, Carretero, P, Delgado, J, Linares, J, Samper, J. 2001. An experimental study on the ion-exchange behavior of the smectite of Cabo de Gata (Almer’ıa Spain): FEBEX bentonite. J Colloid Interface Sci. 239:409416 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Srour, PK, McDonald, LM. 2005. Effect of cosolvents on Ca-Na exchange onto Wyoming bentonite. Clays Clay Min. 7253:536547 .

  • 20.

    Gast, RG. 1969. Standard free energies of exchange for alkali metal cations on Wyoming bentonite. Soil Sci Soc Am Proc. 33:3741 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Gast, RG, Bladel, VR, Deshpande, KB. 1969. Standard heats and entropies of exchange for alkali metals on Wyoming bentonite. Soil Sci Soc Am Proc. 33:661664 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Suarez, DL, Zahow, MF. 1989. Calcium–magnesium exchange selectivity of Wyoming montmorillonite in chloride, sulfate and perchlorate solutions. Soil Sci Soc Am. 53:5257 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Lee, JF, Lee, CK, Juang, LC. 1999. Size effects of exchange cation on the pore structure and surface fractality of montmorillonite. J Colloid Interface Sci. 217:172176 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Halim, NA, Ibrahim, ZA, Ahmad, AB. 2010. Intercalation of water and guest molecules within Ca(2+)-montmorillonite. J Therm Anal Calorim. 102:983988 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Khan, AH, Nurnabi, M, Bala, P. 2009. Studies on thermal transformation of Na-montmorillonite–glycine intercalation compounds. J Therm Anal Calorim. 96:929935 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Tarasevich, YI, Aksenenko, EV. 2001. Quantum chemical modelling of ion exchange for alkali earth cations localised in interlayer structural gaps of layer silicate montmorillonite. Colloids Surf A. 180:3339 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Balek, V, Benes, M, Subrt, J. 2008. Thermal characterization of montmorillonite clays saturated with various cations. J Therm Anal Calorim. 92:191197 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Sivakumar, S, Damodar, AD, Warrier, KGK. 1995. Effect of the exchange ion on the properties of boehmite intercalated montmorillonite. Polyhedron. 14:22012204 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    L'alikova, S, Pajtasova, M, Ondrusova, D. 2010. Thermal and spectral properties of natural bentonites and their applications as reinforced nanofillers in polymeric materials. J Therm Anal Calorim. 100:745749 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Karamanis, DT, Aslanoglou, XA, Assimakopoulos, PA, Gangas, NH, Radioanal, J. 1999. Characterization of an aluminum pillared montmorillonite with cation exchange properties. J Radioanal Nucl Chem. 242:39 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Herbert, HJ, Moog, HC. 1999. Cation exchange, interlayer spacing, and water content of MX-80 bentonite in high molar saline solutions. Eng Geol. 54:5565 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Ganguly, S, Dana, K, Ghatak, S. 2010. Thermogravimetric study of n-alkylammonium-intercalated montmorillonites of different cation exchange capacity. J Therm Anal Calorim. 100:7178 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Gast, RG. 1972. Alkali metal cation exchange on chambers montmorillonite. Soil Sci Soc Am. 36:1419 .

  • 34.

    Sposito, G, Holtzclaw, KM, Charlet, L, Jouany, C, Page, AL. 1983. Sodium–calcium and sodium–magnesium exchange on Wyoming bentonite in perchlorate and chloride background ionic media. Soil Sci Soc Am. 47:5156 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Sposito, G, Holtzclaw, KM, Jouany, C, Charlet, L. 1983. Cation selectivity in sodium–calcium, sodium–magnesium, and calcium–magnesium exchange on Wyoming bentonite at 298 K. Soil Sci Soc Am. 47:917921 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Sposito, G, Jouany, C, Holtzclaw, KM, LeVesque, CS. 1983. Calcium–magnesium exchange on Wyoming bentonite in the presence of adsorbed sodium. Soil Sci Soc Am. 47:10811085 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Wen, YK, Jun, S. 1985 The theory of ionic polarization Anhui Education Hefei.

  • 38.

    Hou, MF, Ma, BY, Wan, HF. 2002. Mineralogical properties of various bentonites in China. Rock Min Anal. 21:190194.

  • 39.

    Ma, YJ. 1994. The source, properties and utilization of bentonites. Proc Soil Sci. 22:2128.

  • 40.

    Song, TY. 1997 Advanced inorganic chemistry Higher Education Beijing.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Nov 2023 16 9 0
Dec 2023 43 4 0
Jan 2024 24 1 0
Feb 2024 34 2 0
Mar 2024 20 2 3
Apr 2024 3 0 0
May 2024 0 0 0