Authors:
B. Yan School of Chemical Engineering/Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710069, Shaanxi, China
School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, Shaanxi, China

Search for other papers by B. Yan in
Current site
Google Scholar
PubMed
Close
,
H. X. Ma School of Chemical Engineering/Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710069, Shaanxi, China

Search for other papers by H. X. Ma in
Current site
Google Scholar
PubMed
Close
,
N. N. Zhao School of Chemical Engineering/Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710069, Shaanxi, China

Search for other papers by N. N. Zhao in
Current site
Google Scholar
PubMed
Close
,
T. Mai School of Chemical Engineering/Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710069, Shaanxi, China

Search for other papers by T. Mai in
Current site
Google Scholar
PubMed
Close
,
J. R. Song School of Chemical Engineering/Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710069, Shaanxi, China
Department of Conservation Technology, The Palace Museum, Beijing 100009, China

Search for other papers by J. R. Song in
Current site
Google Scholar
PubMed
Close
,
F. Q. Zhao Science and Technology on Combustion and Explosion Laboratory, Xi'an Modern Chemistry Research Institute, Xi'an 710065, Shaanxi, China

Search for other papers by F. Q. Zhao in
Current site
Google Scholar
PubMed
Close
, and
R. Z. Hu Science and Technology on Combustion and Explosion Laboratory, Xi'an Modern Chemistry Research Institute, Xi'an 710065, Shaanxi, China

Search for other papers by R. Z. Hu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

As N-2′,4′-dinitrophenyl-3,3-dinitroazetidine (DNPDNAZ) is an important derivative of 3,3-dinitroazetidine, its thermal behavior was studied under 0.1 and 2 MPa by the differential scanning calorimetry (DSC) method. The results of this study show that there are one melting process and two exothermic decomposition processes. Its kinetic parameters of the intense exothermic decomposition process were obtained from the analysis of the DSC curves. The activation energy and the mechanism function under 0.1 MPa are 167.26 kJ mol−1 and f(α) = 3(1 + α)2/3[(1 + α)1/3− 1]−1/2, respectively, and the said parameters under 2 MPa are 169.30 kJ mol−1 and f(α) = 3(1 + α)2/3[(1 + α)1/3− 1]−1/2, respectively. The specific heat capacity of DNPDNAZ was determined using a continuous Cp mode of micro-calorimeter. Using the relationship between Cp and T with the thermal decomposition parameters, the time of the thermal decomposition from initialization to thermal explosion (adiabatic time-to-explosion, tTIAD), the self-accelerating decomposition temperature (TSADT), thermal ignition temperature (TTIT), critical temperatures of thermal explosion (Tb), and half-life (t1/2) were obtained to evaluate its thermal safety under different pressures.

  • 1.

    Archibald, TG, Gilardi, R, Baum, K, George, C. 1990. Synthesis and X-ray crystal structure of 1,3,3-trinitroazetidine. J Org Chem. 55:29202924 .

  • 2.

    Hiskey, MA, Coburn, MD, Mitchell, MA, Benicewicz, BC. 1992. Synthesis of 3,3-dinitroazetidine from 1-t-butyl-3,3-dinitroazetidine. J Heterocycl Chem. 29:18551856 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Hiskey, MA, Stincipher, MM, Brown, JE. 1993. Synthesis and initial characterization of some energetic salts of 3,3-dinitroazetidine. J Energy Mater. 11:157165 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Ma, HX, Yan, B, Li, ZN, Guan, YL, Song, JR, Xu, KZ, Hu, RZ. 2009. Preparation, non-isothermal decomposition kinetics, heat capacity and adiabatic time-to-explosion of NTO·DNAZ. J Hazard Mater. 169:10681073 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Ma, HX, Yan, B, Li, ZN, Song, JR, Hu, RZ. 2009. Synthesis, molecular structure, non-isothermal decomposition kinetics and adiabatic time to explosion of 3, 3-dinitroazetidinium 3,5-dinitrosalicylate. J Therm Anal Calorim. 95:437444 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Ma, HX, Yan, B, Li, JF, Ren, YH, Chen, YS, Zhao, FQ, Song, JR, Hu, RZ. 2010. Molecular structure, thermal behavior and adiabatic time-to-explosion of 3,3-dinitroazetidinium picrate. J Mol Struc. 981:103110 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Ma, HX, Yan, B, Ren, YH, Guan, YL, Zhao, FQ, Song, JR, Hu, RZ. 2011. Thermal behavior and thermal safety on 3,3-dinitroazetidinium salt of perchloric acid. J Therm Anal Calorim. 103:569575 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Yan, B, Ma, HX, Hu, Y, Guan, YL, Song, JR. 2009. 1-(2,4-Dinitrophenyl)-3,3-dinitroazetidine. Acta Crystallogr E. 65:o3215 .

  • 9.

    Yan, B, Ma, HX, Li, JF, Guan, YL, Song, JR. 2010. 1-Benzoyl-3,3-dinitroazetidine. Acta Crystallogr E. 66:o57 .

  • 10.

    Ma, HX, Song, JR, Zhao, FQ, Hu, RZ, Xiao, HM. 2007. Nonisothermal reaction kinetics and computational studies on the properties of 2,4,6,8-tetranitro-2,4,6,8-tetraazabicyclo [3,3,1] onan-3,7-dione (TNPDU). J Phys Chem A. 111:86428649 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Zhang, TL, Hu, RZ, Xie, Y, Li, FP. 1994. The estimation of the critical temperature of thermal explosion for energetic materials using non-isothermal DSC. Thermochim Acta. 244:171176 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Wang, QF, Wang, L, Zhang, XW, Mi, ZT. 2009. Thermal stability and kinetic of decomposition of nitrated HTPB. J Hazard Mater. 172:16591664 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Smith, LC. 1975. An approximate solution of the adiabatic explosion problem. Thermochim Acta. 13:16 .

  • 14.

    Hu, RZ, Zhang, H, Xia, ZM, Guo, PJ, Gao, SL, Shi, QZ, Lu, GE, Jiang, JY. 2003. Estimation formulae of the critical rate of temperature rise for thermal explosion of exothermic decomposition reaction system of energetic materials. Chin J Energy Mater. 11:130133 (in Chinese).

    • Search Google Scholar
    • Export Citation
  • 15.

    Zhao, HA, Hu, RZ, Wang, XJ, Zhao, FQ, Gao, HX, Zhang, H, Zhang, XL, Feng, Y, Ma, HX. 2009. Thermal safety of 1,3,3-trinitroazetidine (TNAZ). Acta Chim Sinica. 67:25362540 (in Chinese).

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2024 10 0 0
May 2024 14 0 0
Jun 2024 6 0 0
Jul 2024 14 0 0
Aug 2024 52 0 0
Sep 2024 30 2 2
Oct 2024 67 0 0