View More View Less
  • 1 School of Chemical Engineering, State University of Campinas, UNICAMP, 13083-852, Campinas, SP, Brazil
  • | 2 Institute of Chemistry, Federal University of Rio Grande do Norte, 59078-970, Natal, RN, Brazil
  • | 3 Petrobras SA, CENPES/PDEDS, Center of Research and Development, 21941-915, Rio de Janeiro, RJ, Brazil
Restricted access

Abstract

This work proposed a technique to estimate the kinetic parameters of cracking reaction. High-boiling-point petroleum fractions (>623.15 K) were analyzed. The experiments were performed using a thermal analysis system with a differential scanning calorimetry module at different linear heating rates (15, 20, 25, and 30 K min−1) in the temperature range from 303.15 to 823.15 K. The Arrhenius, Kissinger, and Flynn–Ozawa–Wall methods were used to determine the kinetic parameters. The compensation effect and the dependence on the activation energy of the conversion degree were evaluated. The catalyst used was a typical FCC regenerated catalyst containing 48.3 mass% of alumina, and particle size of 67 μm. The effect of catalyst loading was studied using 3, 5, and 10 mass%. Analysis of the DSC curves showed a major transitional stage between 693.15 and 723.15 K, identified as an endothermic region of high temperature oxidation (HTO). Empirical kinetic models were produced and data were obtained from the kinetic analysis of the HTO region. Under non-isothermal heating conditions higher activation energies were found as the API gravity of the high-boiling-point petroleum fraction decreased. On the other hand, the results showed consistent effects for the dependence of the activation energy on the extent of cracking conversion under non-isothermal conditions, showing a decrease with the extent of conversion. The catalytic loading effect is remarkable, and provides an alternative route for the cracking with lower activation energy with increasing catalyst weight. The kinetic parameters formulated will be used in the mathematical modeling of the reactive molecular distillation process for upgrading high-boiling-point petroleum fractions.

  • 1.

    Merdrignac, I, Espinat, D. 2007. Physicochemical characterization of petroleum fractions: the state of the art. Oil Gas Sci Technol. 62:732 .

  • 2.

    Tovar LP , Wolf Maciel MR, Maciel Filho R, Batistella CB, Ariza OC, Medina LC. Overview and computational approach for studying the physicochemical characterization of high-boiling-point petroleum fractions (350°C+). Oil Gas Sci Technol. 2011. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Inuzuka, M, Ishikawa, H, Yamada, I, Hiraoka, S, Aragaki, T, Inukai, Y, Erciyes, AT, Kobayashi, S. 1989. Vaporization from liquid film of binary mixture in a centrifugal molecular still. J Chem Eng Jpn. 22:291297 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Hernández-Barajas, JR, Vázquez-Román, R, Félix-Flores, MG. 2009. A comprehensive estimation of kinetic parameters in lumped catalytic cracking reaction models. Fuel. 88:169178 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Gupta, RK, Kumar, V, Srivastava, VK. 2007. A new generic approach for modeling of fluid catalytic cracking (FCC) riser reactor. Chem Eng Sci. 62:45104528 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Ebrahimi, S, Moghaddas, JS, Razavi Aghjeh, MK. 2008. Study on thermal cracking behavior of petroleum residue. Fuel. 87:16231627 .

  • 7.

    Gupta SR . Modeling and simulation of fluid catalytic cracking unit. Thesis (Doctor of Philosophy), Department of Chemical Engineering, Deemed University, India, 2006.

    • Search Google Scholar
    • Export Citation
  • 8.

    Kök, MV, Keskin, C. 2001. Comparative combustion kinetics for in situ combustion process. Thermochim Acta. 369:143147 .

  • 9.

    Kök, MV. 2003. Effect of metal oxide on light oil combustion. J Therm Anal Calorim. 73:241246 .

  • 10.

    Gonçalves, MLA, Barreto, JRC, Cerqueira, WV, Teixeira, AMRF. 2009. Effect of zeolite, kaolin and alumina during cracking of heavy petroleum residue evaluated by thermogravimetry. J Therm Anal Calorim. 97:515519 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Yasar, M, Akmaz, S, Gurkaynak, MA. 2007. Investigation of glass transition temperatures of Turkish asphaltenes. Fuel. 86:17371748 .

  • 12.

    Sánchez-Jiménez, PE, Criado, JM, Pérez-Maqueda, LA. 2008. Kissinger kinetic analysis of data obtained under different heating schedules. J Therm Anal Calorim. 94:427432 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Guo, A, Zhang, X, Wang, Z. 2008. Simulated delayed coking characteristics of petroleum residues and fractions by thermogravimetry. Fuel Process Technol. 89:643650 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Silva EFB , Ribeiro MP, Coriolano ACF, Melo ACR, Santos AGD, Fernandes VJ, Araujo AS. Kinetic study of degradation of heavy oil over MCM-41. Therm Anal Calorim. 2011. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Kök, MV, Gundogar, AS. 2010. Effect of different clay concentrations on crude oil combustion kinetics by thermogravimetry. J Therm Anal Calorim. 99:779783 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Açıkalın, K. 2011. Thermogravimetric analysis of walnut shell as pyrolysis feedstock. J Therm Anal Calorim. 105:145150 .

  • 17.

    Kobelnik, M, Ribeiro, CA, Dias, DS, Almeida, S, Crespi, MS, Capela, JMV. 2011. Study of the thermal behavior of the transition phase of Co(II)–diclofenac compound by non-isothermal method. J Therm Anal Calorim. 105:467471 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Crespi, MS, Hikosada, MY, Amaral, GCA, Ribeiro, CA. 2007. Kinetic parameters obtained for thermal decomposition of acrylic resins present in commercial paint emulsions. J Therm Anal Calorim. 88:669672 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Joraid, AA. 2007. Estimating the activation energy for the non-isothermal crystallization of an amorphous Sb9.1Te20.1Se70.8 alloy. Thermochim Acta. 456:16 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Vyazovkin, SV, Sbirrazzuoli, N. 2003. Estimating the activation energy for non-isothermal crystallization of polymer melts. J Therm Anal Calorim. 72:681686 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Perošević, S, Rašković, L. 2000. Correlation of reaction kinetic parameters in two component polyurethane systems. Facta Univ Ser Work Living Environ Prot. 1:6979.

    • Search Google Scholar
    • Export Citation
  • 22.

    Kissinger, H. 1957. Reaction kinetics in differential thermal analysis. Anal Chem. 29:17021706 .

  • 23.

    Skala, D, Kopsch, H, Sokić, M, Neumann, H, Jovanović, J. 1987. Thermogravimetrically and differential scanning calorimetrically derived kinetics of oil pyrolysis. Fuel. 66:11851191 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Khawam, A, Flanagan, DR. 2005. Role of isoconversional methods in varying activation energies of solid–state kinetics I. Isothermal kinetic studies. Thermochim Acta. 429:93102 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Galwey, AK, Brown, ME. 1997. Arrhenius parameters and compensation behaviour in solid-state decompositions. Thermochim Acta. 300:107115 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Flynn, JH, Wall, LA. 1966. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Pol Lett. 4:323328.

    • Search Google Scholar
    • Export Citation
  • 27.

    Ozawa, T. 1970. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal Calorim. 2:301324 .

  • 28.

    Moreno, RMB ES de Medeiros Ferreira, FC, Alves, N, Gonçalves, PS, Mattoso, LHC. 2006. Thermogravimetric studies of decomposition kinetics of six different IAC Hevea rubber clones using Flynn–Wall–Ozawa approach. Plast Rubber Compos. 35:1521 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    American Society for Testing Materials-ASTM D 2892. Standard test method for distillation of crude petroleum (15-Theoretical plate column). West Conshohoken, PA: ASTM International, 2005. 32 p.

    • Search Google Scholar
    • Export Citation
  • 30.

    Del Bianco, A, Panariti, N, Anelli, M, Beltrame, PL, Carniti, P. 1993. Thermal cracking of petroleum residues: 1. Kinetic analysis of the reaction. Fuel. 72:7580 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Kök, MV, Karacan, O. 1998. Pyrolysis analysis and kinetics of crude oils. J Therm Anal Calorim. 52:781788 .

  • 32.

    Kök, MV. 1993. Use of thermal equipment to evaluate crude oils. Thermochim Acta. 214:315324 .

  • 33.

    Gao, Z, Amasaki, I, Kaneko, T, Nakada, M. 2004. Assessment of the error of the pre-exponential factor obtained from the isoconversional plot and the single heating rate plot for dynamic thermogravimetric measurement of polymer degradation. Polym Degrad Stab. 83:6770 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Yang, J, Chen, J, Sun, Z, Fan, Y. 1993. Kinetic behavior for the non-isothermal coking of four Chinese vacuum residua. Pet Sci Technol. 11:909921.

    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 0 0 0
Sep 2021 0 0 0
Oct 2021 0 0 0
Nov 2021 6 0 0
Dec 2021 0 0 0