View More View Less
  • 1 Department of Chemical & Petroleum Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
Restricted access

Abstract

This study investigated the catalytic effect of NiO, Co3O4 and Fe3O4 nanoparticles toward asphaltene thermal decomposition (pyrolysis) under inert conditions. Asphaltene adsorbed onto the selected nanoparticles were subjected to thermal decomposition up to 800 °C in a thermogravimetric analyzer. The presence of nanoparticles caused a significant decrease in the asphaltene decomposition temperature and activation energy. Activation energies for the process were calculated using the Ozawa–Flynn–Wall method. All the selected metal oxide nanoparticles showed high catalytic activity toward asphaltene decomposition in the following order NiO > Co3O4 > Fe3O4. This study confirms that metal oxide nanoparticles can significantly enhance the thermal decomposition of heavy hydrocarbons, like asphaltenes.

  • 1.

    Governement of Alberta. Environmental management of Alberta's oilsands. http://environment.gov.ab.ca/info/library/8042.pdf (2009). Accessed 30 Oct 2011.

    • Search Google Scholar
    • Export Citation
  • 2.

    Nassar, NN, Hassan, A, Pereira-Almao, P. 2011. Metal oxide nanoparticles for asphaltene adsorption and oxidation. Energy Fuels. 25 3 10171023 .

  • 3.

    Hein, FJ. 2006. Heavy oil and oil (Tar) sands in North America: an overview & summary of contributions. Nat Resour Res. 15 2 6784 .

  • 4.

    Herron, EH , King, SD. Heavy oil as the key to U.S. energy security. 2011. http://www.petroleumequities.com/cgi-bin/site.cgi?t=5&p=energysecurity.html. Accessed 11 June 2011.

    • Search Google Scholar
    • Export Citation
  • 5.

    Nassar, NN, Hassan, A, Pereira-Almao, P. 2011. Effect of surface acidity and basicity of aluminas on asphaltene adsorption and oxidation. J Colloid Interface Sci. 360:233238 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Nassar, NN, Hassan, A, Pereira-Almao, P. 2011. Comparative oxidation of adsorbed asphaltenes onto transition metal oxide nanoparticles. Colloids Surf A. 384 1–3 145149 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Nassar, NN, Hassan, A, Pereira-Almao, P. 2011. Application of nanotechnology for heavy oil upgrading: catalytic steam gasification/cracking of asphaltenes. Energy Fuels. 25 4 15661570 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Nassar, NN, Pereira-Almao, P. 2010. Capturing H2S(g) by in situ-prepared ultradispersed metal oxide particles in an oilsand-packed bed column. Energy Fuels. 24 11 59035906 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Nassar, NN, Husein, MM, Pereira-Almao, P. 2010. Ultradispersed particles in heavy oil: part II, sorption of H2S(g). Fuel Process Technol. 91 2 169174 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Nassar, NN. 2010. Asphaltene adsorption onto alumina nanoparticles: kinetics and thermodynamic studies. Energy Fuels. 24 8 41164122 .

  • 11.

    Husein, MM, Nassar, NN. 2008. Nanoparticle preparation using the single microemulsions scheme. Curr Nanosci. 4 4 370380 .

  • 12.

    Nassar, NN , Hassan, A, Carbognani, L, Lopez-Linares, F, Pereira-Almao, P. Iron oxide nanoparticles for rapid adsorption and enhanced catalytic oxidation of thermally cracked asphaltenes. Fuel 2011. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Vyazovkin, S et al. 2011. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 520 1–2 119 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Flynn, JH. 1997. The “temperature integral”—its use and abuse. Thermochim Acta. 300 1–2 8392 .

  • 15.

    Ozawa, T. 1965. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 38 11 18811886 .

  • 16.

    Doyle, CD. 1965. Series approximations to the equation of thermogravimetric data. Nature. 207 4994 290291 .

  • 17.

    Doyle, CD. 1961. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 5 15 285292 .

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2021 8 0 0
Jun 2021 3 1 0
Jul 2021 6 0 0
Aug 2021 4 1 0
Sep 2021 4 0 0
Oct 2021 2 0 0
Nov 2021 0 0 0