View More View Less
  • 1 Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
  • | 2 Materials Science Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand
Restricted access

Abstract

The thermal decomposition behaviors of styrene–(ethylene butylene)–styrene (SEBS) thermoplastic elastomer filled with liquid crystalline polymer (LCP), organomontmorillonite (OMMT), and carbon nanotube (CNT) as a heat stabilizing filler, were comparatively investigated using nonisothermal- and isothermal-thermogravimetric analyses in air. The isoconversional method was employed to evaluate the kinetic parameters (Ea, lnA, and n) under dynamic heating. For neat samples, OMMT and CNT exhibited their respective lowest and highest thermal stabilities as revealed from the lowest and the highest Tonset values, respectively. The decomposition rates of the composites containing OMMT at the temperature >250 °C were higher than those containing CNT and LCP, respectively, whereas the elastomer matrix degraded with the highest rate. The obtained TG profiles and calculated kinetic parameters indicated that the incorporation of LCP, OMMT, and CNT into elastomer matrix improved the thermal stability. Especially, the CNT- and OMMT-containing composites significantly improved the thermal stability compared with the neat matrix polymer. Simultaneously recorded DSC thermograms revealed that the degradation processes for the neat polymers and their composites were exothermic in air. From the simultaneously recorded DSC data, the enthalpy of thermal decomposition for each composite system was found to be lower than that of the neat matrix and mostly decreasing with increasing filler loading. The isothermal decomposition stabilities of the neat SEBS and its composites containing the different fillers were in agreement with those of the nonisothermal investigation.

  • 1.

    Kiss, G. 1987. In situ composites: blends of isotropic polymers and thermotropic liquid crystalline polymers. Polym Eng Sci. 27:410423 .

  • 2.

    Tjong, S. 2003. Structure, morphology, mechanical and thermal characteristics of the in situ composites based on liquid crystalline polymer and thermoplastics. Mater Sci Eng. R41:160.

    • Search Google Scholar
    • Export Citation
  • 3.

    Saikrasun, S, Limpisawasdi, P, Amornsakchai, T. 2009. Effect of LCP and rPET as reinforcing materials on rheology, morphology and thermal properties of in situ microfibrillar-reinforced elastomer composites. J Appl Polym Sci. 12:18971908 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Saikrasun, S, Limpisawasdi, P, Amornsakchai, T. 2009. Comparative study on phase and thermal properties between rPET/PS and LCP/PS in situ microfibrillar-reinforced composites. J Polym Res. 16:443454 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    LB de Paiva Morales, AR, Diaz, FRV. 2008. Organoclays: properties, preparation and applications. Appl Clay Sci. 42:824 .

  • 6.

    Ganguly, A M De Sarka Bhowmick, AK. 2006. Thermoplastic elastomeric nanocomposites from poly[styrene–(ethylene-co-butylene)–styrene] triblock copolymer and clay: preparation and characterization. J Appl Polym Sci. 100:20402052 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Lai, S-M, Chen, CM. 2007. Preparation, structure, and properties of styrene–ethylene–butylene–styrene block copolymer/clay nanocomposites: Part III. Effectiveness of compatibilizers. Eur Polym J. 43:22542264 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Lepoittevin, B, Devalckenaere, M, Pantoustier, N, Alexandre, M, Kubies, D, Calberg, C, Jérôme, R, Dubois, P. 2002. Poly(-caprolactone)/clay nanocomposites prepared by melt intercalation: mechanical, thermal and rheological properties. Polymer. 43:40174023 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Kiliaris, P, Papaspyrides, CD. 2010. Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog Polym Sci. 35:902958 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Morgan, AB, Wilkie, CA. 2007 Flame retardant of polymer nanocomposites Wiley Hoboken .

  • 11.

    Pandey, JK, Reddy, KR, Kumar, AP, Singh, RP. 2005. An overview on the degradability of polymer nanocomposites. Polym Degrad Stab. 88:234250 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Cheng HKF , Sahoo NG, Lu X, Li L. Thermal kinetics of montmorillonite nanoclay/maleic anhydride-modified polypropylene nanocomposites. J Therm Anal Calorim. 2011. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Leszczynska, A, Njuguna, J, Pielichowski, K, Banerjee, JR. 2007. Polymer/montmorillonite nanocomposites with improved thermal properties: part II thermal stability of montmorillonite nanocomposites based on different polymeric matrixes. Thermochim Acta. 454:122 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Guldi, DM, Rahman, GMA, Zerbetto, F, Prato, M. 2005. Carbon nanotubes in electron donor–acceptor nanocomposites. Acc Chem Res. 38:871878 .

  • 15.

    Sgobba, V, Rahman, GMA, Ehli, C, Guldi, DM. 2006. Covalent and noncovalent approaches towards multifunctional carbon nanotube materials F Langa JF Nierengarten eds. Fullerenes principles and applications RSC Nanoscience and Nanotechnology Series Cambridge 329379.

    • Search Google Scholar
    • Export Citation
  • 16.

    Bandaru, PR. 2007. Electrical properties and applications of carbon nanotube structures. J Nanosci Nanotechnol. 7:12391267 .

  • 17.

    Kashiwagi, T, Du, F, Winey, KI, Groth, KM, Shields, JR, Bellayer, SP, Kim, H, Douglas, JF. 2005. Flammability properties of polymer nanocomposites with single-walled carbon nanotubes: effects of nanotube dispersion and concentration. Polymer. 46:471481 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Schartel, B, Pötschke, P, Knoll, U, Abdel-Goad, M. 2005. Fire behaviour of polyamide 6/multiwall carbon nanotube nanocomposites. Eur Polym J. 41:10611070 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Bocchini, S, Frache, A, Camino, G, Claes, M. 2007. Polyethylene thermal oxidative stabilisation in carbon nanotubes based nanocomposites. Eur Polym J. 43:32223235 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Spitalskya, Z, Tasis, D, Papagelis, K, Galiotis, C. 2010. Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci. 35:357401 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Yang, SY, Castilleja, JR, Barrera, EV, Lozano, K. 2004. Thermal analysis of an acrylonitrileebutadieneestyrene/SWNT composite. Polym Degrad Stab. 83:383388 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Probst, O, Moore, EM, Reasaco, DE, Grady, BP. 2004. Nucleation of polyvinyl alcohol crystallization by single-walled carbon nanotubes. Polymer. 5:44374443 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Kashiwagi, T, Grulke, E, Hilding, J, Harris, R, Awad, W, Douglas, J. 2002. Thermal degradation and flammability properties of poly(propylene)/carbon nanotubes composites. Macromol Rapid Commun. 23:761765 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Yang, J, Lin, Y, Wang, J, Lai, M, Li, J, Liu, J, Tong, X, Cheng, H. 2005. Morphology, thermal stability, and dynamic mechanical properties of atactic polypropylene/carbon nanotubes composites. J Appl Polym Sci. 98:10871091 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Beyer, G. 2002. Carbon nanotubes as flame retardants for polymers. Fire Mater. 26:291293 .

  • 26.

    Allen, NS, Edge, M, Wilkinson, A, Liauw, CM, Mouretou, D, Barrio, J, Martinez-Zaporta, MA. 2001. Degradation and stabilisation of styrene–ethylene–butadiene–styrene (SEBS) block copolymer. Polym Degrad Stab. 71:113122 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Saikrasun, S, Wongkalasin, O. 2005. Thermal decomposition kinetics of thermotropic liquid crystalline p-hydroxy benzoic acid/poly(ethylene terephthalate) copolyester. Polym Degrad Stab. 88:300308 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Sato, H, Kikuchi, T, Koide, N, Furuya, K. 1996. Thermal degradation and combustion process of liquid crystalline polyester studied by directly coupled thermal analysis-mass spectrometry. J Anal Appl Pyrol. 37:173183 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Song, S, Wang, Z, Meng, X, Zhang, B, Tang, T. 2007. Influences of catalysis and dispersion of organically modified montmorillonite on flame retardancy of polypropylene nanocomposites. J Appl Polym Sci. 106:34883494 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Jang, BN, Costache, M, Wilkie, CA. 2005. The relationship between thermal degradation behavior of polymer and the fire retardancy of polymer/clay nanocomposites. Polymer. 46:1067810687 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Zanetti, M, Bracco, P, Costa, L. 2004. Thermal degradation behaviour of PE/clay nanocomposites. Polym Degrad Stab. 85:657665 .

  • 32.

    Kodjie, SL, Li, L, Li, B, Cai, W, Li, CY, Keating, M. 2006. Morphology and crystallization behavior of HDPE/CNT nanocomposite. J Macromol Sci B. 45:231245 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Yu, SH, Yeh, JT, Huang, BC, Huang, KS. 2010. Preparation of a HDPE/carbon nanotube composite. Polym Plast Technol. 49:15341539 .

  • 34.

    Li, S, Chen, H, Cui, D, Li, J, Zhang, Z, Wang, Y, Tang, T. 2010. Structure and properties of multi-walled carbon nanotubes/polyethylene nanocomposites synthesized by in situ polymerization with supported Cp2ZrCl2 catalyst. Polym Compos. 31:507515 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Gorrasi, G, Romeo, V, Sannino, D, Sarno, M, Ciambelli, P, Vittoria, V B De Vivo Tucci, V. 2007. Carbon nanotube induced structural and physical property transitions of syndiotactic polypropylene. Nanotechnology. 18:275703 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Chrissafis K , Bikiaris D. Can nanoparticles really enhance thermal stability of polymers? Part I: an overview on thermal decomposition of addition polymers. Thermochim Acta. 2011;523: 124. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Ozawa, T. 1965. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 38:1881 .

  • 38.

    Flynn, JH, Wall, LA. 1966. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stds. 70A:487523 .

  • 39.

    Chrissafis, K, Paraskevopoulos, KM, Stavrev, SY, Docoslis, A, Vassiliou, A, Bikiaris, DN. 2007. Characterization and thermal degradation mechanism of isotactic polypropylene/carbon black nanocomposites. Thermochim Acta. 465:617 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Antonucci, V, Faiella, G, Giordano, M, Nicolais, L, Pepe, G. 2007. Electrical properties of single walled carbon nanotube reinforced polystyrene composites. Macromol Symp. 247:172181 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Ma, H, Tong, L, Xu, Z, Fang, Z. 2007. Synergistic effect of carbon nanotube and clay for improving the flame retardancy of ABS resin. Nanotechnology. 18:375602 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    A De Falco Marzocca, AJ, Corcuera, MA, Eceiza, A, Mondragon, I, Rubiolo, GH, Goyanes, S. 2009. Accelerator adsorption onto carbon nanotubes surface affects the vulcanization process of styrene–butadiene rubber composites. J Appl Polym Sci. 113:28512857 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Liu, J, Rasheed, A, Minus, ML, Kumar, S. 2009. Processing and properties of carbon nanotube/poly(methyl methacrylate) composite films. J Appl Polym Sci. 112:142156 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Kissinger, HE. 1957. Reaction kinetics in differential thermal analysis. Anal Chem. 29:1702 .

  • 45.

    Saikrasun, S, Amornsakchai, T. 2007. Isothermal decomposition behavior and dynamic mechanical properties of in situ-reinforcing elastomer composites based on thermoplastic elastomers and thermotropic liquid crystalline polymer. J Appl Polym Sci. 103:917927 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Laoutid, F, Bonnaud, L, Alexandre, M, Lopez-Cuesta, J-M, Dubois, Ph. 2009. New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater Sci Eng. R63:100125.

    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2021 2 0 0
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 4 0 0
Sep 2021 1 0 0
Oct 2021 1 0 0
Nov 2021 0 0 0