View More View Less
  • 1 Department of Chemistry, Faculty of Science, Cairo University, Giza 12163, Egypt
Restricted access

Abstract

The thermal cure behavior of diglycidyl ether bisphenol-A/carboxylated polyester hybrid powder coating system in the absence and presence of catalyst was monitored using differential scanning calorimetry. Curing temperatures were between 160 and 200 °C. The experimental results showed an autocatalytic behavior of the reaction, which could be described by the model proposed by Kamal. This model includes two rate constants k1 and k2 and two reaction orders m and n. The activation energies Ea1 and Ea2 of these rate constants were 51.7 and 42.3 kJ/mol for uncatalyzed cure reaction and 40.6 and 35.0 kJ/mol for externally catalyzed reaction. The average order of the overall reaction was found to be 2.45 and 2.72 for uncatalyzed and catalyzed system, respectively. Except for the late stage of cure reaction, the model agreed well with the experimental data, especially at high temperatures and in externally catalyzed cure reaction. A diffusion factor was introduced into the model to account for the effect of diffusion on the cure rate. The modified model greatly improved the predicated data at the late stage of cure reaction.

  • 1.

    Weiss, KD. 1997. Paint and coatings: a mature industry in transition. Prog Polym Sci. 22:203245 .

  • 2.

    Misev, TA. 1991 Powder coating, chemistry and technology Wiley New York.

  • 3.

    Marold, B, Funke, W. 1994. Determination of the glass transition temperature at polymer surface from the temperature dependence of wetting. Prog Org Coat. 23:287297 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Montserrat, S, Calventus, Y, Hutchinson, JM. 2006. Physical aging of thermosetting powder coatings. Prog Org Coat. 55:3542 .

  • 5.

    Musto, P, Martuscelli, E, Ragosta, G, Russo, P, Villano, P. 1999. Tetrafunctional epoxy resins: modeling the curing kinetics based on FTIR spectroscopy data. J Appl Polym Sci. 74:532540 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Omrani, A, Simon, LC, Rostami, AA, Ghaemy, M. 2008. Cure kinetics FTIR study of epoxy/nickel–imidazole system. Int J Chem Kinet. 40:663669 .

  • 7.

    Mijovic, J, Andjelic, S. 1995. A study of reaction kinetics by near-infrared spectroscopy. 1. Comprehensive analysis of a model epoxy/amine system. Macromolecules. 28:27872796 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Bombard, I, DaSilva, B, Dufour, P, Laurent, P. 2010. Experimental predictive control of the infrared cure of a powder coating: a non-linear distributed parameter model based approach. Chem Eng Sci. 65:962975 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Roman, F, Montserrat, S. 2006. Thermal and dielectric properties of powder coatings based on carboxylated polyester and β-hydroxyalkylamide. Prog Org Coat. 56:311318 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Madbouly, SA, Serag Eldin, AF, Mansour, AA. 2007. Effect of curing on the broadband dielectric spectroscopy of powder coating. Eur Polym J. 43:24622470 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Ramis, X, Salla, JM. 1997. Time-temperature transformation (TTT) cure diagram of an unsaturated polyester resin. Polym Sci B Polym Phys. 35:371388 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Salla, JM, Ramis, X, Morancho, JM, Cadenato, A. 2002. Isoconversional kinetic analysis of a carboxyl terminated polyester resin crosslinked with triglycidylisocyanurate (TGIC) used in powder coating from experimental results obtained by DSC and TMDMC. Thermochim Acta. 388:355370 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Ramis, X, Cadenato, A, Morancho, JM, Salla, JM. 2003. Curing of a thermosetting powder coating by means of DMTA, TMA and DSC. Polymer. 44:20672079 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Belder, EG, Rutten, HJJ, Perera, DY. 2001. Cure characterisation of powder coatings. Prog Org Coat. 42:142149 .

  • 15.

    Kalaee, M, Akhlaghi, S, Nouri, A, Mazinani, S, Mortezaei, M, Afsharid, M, Mostafanezhad, D, Allahbakhsh, A, Dehaghi, HA, Amirsadri, A, Gohari, DP. 2011. Effect of nano-sized calcium carbonate on cure kinetics and properties of polyester/epoxy blend powder coatings. Prog Org Coat. 71:173180 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Wuzella, G, Kandelbauer, A, Mahendran, AR, Teischinger, A. 2011. Thermochemical and isoconversional kinetic analysis of a polyester–epoxy. Prog Org Coat. 70:186191 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Rabearison, N, Jochum, Ch, Grandidier, JC. 2011. A cure kinetics, diffusion controlled and temperature dependent, identification of the Araldite LY556 epoxy. J Mater Sci. 46:787796 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Saad, GR, Abd Elhamid, EE, Elmenyawy, SA. 2011. Dynamic cure kinetics and thermal degradation of brominated epoxy resin–organoclay based nanocomposites. Thermochim Acta. 524:186193 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Fraga, F, Soto, VH, Rodríguez-Núñez, E, Martínez-Ageitos, JM, Rodríguez, V. 2007. Cure kinetic of the epoxy network diglycidyl ether of bisphenol A (BADGE n = 0)/Amantidine. J Therm Anal Calorim. 87:97100 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Guo, Q, Huang, Y, Zhang, Y-Y, Zhu, L-R, Zhang, B-L. 2010. Curing behavior of epoxy resins with a series of novel curing agents containing 4,4′-biphenyl and varying methylene units. J Therm Anal Calorim. 102:915922 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    López, M, Blanco, M, Vazquez, A, Ramos, JA, Arbelaiz, A, Gabilondo, N, Echeverríaand, JM, Mondragon, I. 2009. Isoconversional kinetic analysis of cresol-clay nanocomposites. J Therm Anal Calorim. 96:567573 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Koreeda, T, Matos, J, Gonçalves, CS. 2011. Cure kinetics of epoxy composite applied on stator bars insulate on. J Therm Anal Calorim. 106:631635 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Vyazovkin, S, Burnham, AK, Criado, JM, Pérez-Maqueda, LA, Popescu, C, Sbirrazzuoli, N. 2011. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 520:119 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Kamal, MR, Sourour, S. 1976. Differential scanning calorimetry of epoxy cure: isothermal cure kinetics. Thermochim Acta. 14:4159 .

  • 25.

    Fournier, J, Williams, G, Dutch, C, Aldridge, GA. 1996. Changes in molecular dynamics during bulk polymerization of an epoxide–amine system as studied by dielectric relaxation spectroscopy. Macromolecules. 29:70977107 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Opalicki, M, Kenny, JM, Nicholias, L. 1996. Cure kinetics of neat and carbon-fiber-reinforced TGDDM/DDS epoxy systems. J Appl Polym Sci. 61:10251037 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Gao, J, Li, Y. 2000. Curing kinetics and thermal property characterization of a bisphenol-S epoxy resin and DDS system. Polym Int. 49:15901595 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Sánchez-Cabezudo, M, Prolongo, MG, Salomand, C, Masegosa, RM. 2006. Cure kinetics of epoxy resin and thermoplastic polymer. J Therm Anal and Calorim. 86:699705 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Román, F, Montserrat, S, Hutchinson, JM. 2007. On the effect of montmorillonite in the curing reaction of epoxy nanocomposites. J Therm Anal and Calorim. 87:113118 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Barral, L, Cano, J, López, J, López-Bueno, I, Nogueira, P, Ramírez, C. 1999. Cure kinetics of amine tetrafunctional epoxy blends with poly(styrene-co-acrylonitrile). J Therm Anal Calorim. 56:10331040 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    López, J, López-Bueno, I, Nogueira, P, Ramírez, C, Abad, MJ, Barral, L, Cano, J. 2001. Effect of poly(styrene-co-acrylonitrile) on the curing of an epoxy/amine resin. Polymer. 42:16691677 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Boey, FYC, Qiang, W. 2000. Experimental modeling of the cure kinetics of an epoxy-hexaanhydro-4-methylphthalicanhydride (MHHPA) system. Polymer. 41:20812094 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Macan, J, Brnardić, I, Ivanković, M, Mencer, HJ. 2005. DSC study of cure kinetics of DGEBA-based epoxy resin with poly(oxypropylene) diamine. J Therm Anal Calorim. 81:369373 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Ma, Z, Gao, J. 2006. Curing kinetics of o-cresol formaldehyde epoxy resin and succinic anhydride system catalyzed by tertiary amine. J Phys Chem B. 110:1238012383 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Chern, CS, Poehlein, GW. 1987. A kinetic-model for curing reactions of epoxides with amines. Polym Eng Sci. 27:788795 .

  • 36.

    Cole, KC, Hechler, JJ, Noel, D. 1991. A new approach to modeling the cure kinetics of epoxy/amine thermosetting resins. 2. Application to a typical system based on bis[4-(diglycidylamino)phenyl]methane and bis(4-aminophenyl) sulfone. Macromolecules. 24:3098110 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)