View More View Less
  • 1 College of Chemistry and Materials Science, Shandong Agricultural University, Taian 271018, Shandong, China
  • | 2 Binzhou Medical College, Yantai 264003, Shandong, China
Restricted access

Abstract

Phase behavior of dodecane–tetradecane (n-C12H26–C14H30, n-C12–C14) binary system in bulk and confined in SBA-15 (pore diameters 8 nm; 15.9 nm) has been investigated by differential scanning calorimetry and transmission electron microscopy. The bulk system possesses some special phases relating to the rotator phase in normal alkanes. Dodecane–tetradecane mixtures confined in SBA-15 (8 nm) are a system miscible both in solid and liquid states with a phase diagram of a smooth curve. Dodecane–tetradecane system confined in SBA-15 (15.9 nm) exhibits not only solid–liquid (s–l) in all compositions but solid–solid transition in mole fractions of tetradecane 0.1–0.6, which forms a phase diagram of “loop line” shape. Melting temperatures of n-C12–C14/SBA-15 (8 nm) are lower than those of n-C12–C14/SBA-15 (15.9 nm) in all mole fractions. The evolution of the phase diagram of n-C12–C14 confined in 8 nm, 15.9 nm pore sizes of SBA-15 and in bulk, respectively, shows a dramatic effect of confinement on phase behavior of normal alkane mixtures. The s–l phase boundary lines of n-C12–C14/SBA-15 (8, 15.9 nm) are fitted as being [], where D is a polynomial ∑ aixi, i = 1, 2,···, n (A = C14, B = C12).

  • 1.

    Jackson, CL, Mckenna, GB. 1990. The melting behavior of organic materials confined in porous solids. J Chem Phys. 93:90019002 .

  • 2.

    Schreiber, A, Ketelsen, I, Findenegg, GH. 2001. Melting of freezing of water in ordered mesoporous silica materials. Phys Chem Chem Phys. 3:11851195 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Alcoutlabi, M, McKenna, GB. 2005. Effects of confinement on material behavior at the nanometer size scale. J Phys Condens Matter. 17:R461R524 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Simionesco, CA, Coasne, B, Dosseh, G, Dudziak, G, Gubbins, KE, Radhakrishnan, R. 2006. Bartkowiak. effects of confinement on freezing and melting. J Phys Condens Matter. 18:R15R68 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Zheng, W, Simon, SL. 2007. Confinement effects on the glass transition of hydrogen bonded liquids. J Chem Phys. 127 194501 111.

  • 6.

    Chen, S, Wu, GZ, Sha, ML, Huang, SR. 2007. Transition of ionic liquid [bmim][PF6] from liquid to high-melting-point crystal when confined in multiwalled carbon nanotubes. J Am Chem Soc. 129:24162417 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Jähnert, S, Chávez, FV, Schaumann, GE, Schreiber, A, Schönhoff, M, Findenegg, GH. 2008. Melting and freezing of water in cylindrical silica nonopores. Phys Chem Chem Phys. 10:60396051 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Amanuel, S, Bauer, H, Bonventre, P, Lasher, D. 2009. Nonfreezing interfacial layers of cyclohexane in nanoporous silica. J Phys Chem C. 113:1898318986 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Sha, M, Wu, GZ, Liu, YS, Tang, ZF, Fang, HP. 2009. Drastic phase transition in ionic liquid [Dmim][Cl] confined between graphite walls: new phase formation. J Phys Chem C. 113:46184622 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Liu, XX, Wang, Q, Huang, XF, Yang, SH, Li, CX, Li, X, Niu, XJ, Shi, QF, Sun, G, Lu, KQ. 2010. Liquid-solid transition of confined water in silica-based mesopores. J Phys Chem B. 114:41454150 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Morishige, K, Yasunage, H, Matsutani, Y. 2010. Effect of pore shape on freezing and melting temperature of water. J Phys Chem C. 114:40284035 .

  • 12.

    Bartkowiak, MS, Jazdzewska, M. 2010. Melting behavior of bromobenzene within carbon nanotubes. J Chem Eng Data. 55:41834189 .

  • 13.

    Burghaus, U. 2011. Effect of carbon nanotubes’ crystal structure on adsorption kinetics of small molecules. J Therm Anal Calorim. 106:123128 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Sidorchuk, VV, Tertykh, VA, Klimenko, VP, Ragulya, AV. 2010. Formation and some properties of barium titanate embedded into porous matrices. J Therm Anal Calorim. 101:729735 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Czwartos, J, Bartkowiak, MS, Coasne, B, Gubbins, KE. 2009. Melting of mixtures in silica nanopores. Pure Appl Chem. 81:19531959 .

  • 16.

    Espeau, P, Robles, L, Cuevas-Diarte, MA, Mondieig, D, Haget, Y. 1996. Thermal cycling of molecular alloys and eutectics containing alkanes for energy storage. Mater Res Bull. 31:12191232 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Bond Andrew, D, Davies John, E. 2002. n-Decane. Acta Crystallogr E. 58:01960197 .

  • 18.

    Nyburg, SC, Gerson, AR. 1992. Crystallography of the even n-alkanes: structure of C20H42. Acta Crystallogr B. 48:103106 .

  • 19.

    Pan, DK, Zhao, CD, Zheng, ZX. 1987 Structure chemistry 1 Higher education press Bejing 608610.

  • 20.

    Dirand, M, Bouroukba, M, Chevallier, V, Petitjean, D, Behar, E, Ruffier-Meray, V. 2002. Normal alkanes, multialkane synthetic model mixtures, and real petroleum waxes: crystallographic structures, thermodynamic properties, and crystallization. J Chem Eng Data. 47:115143 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Riikonen, J, Salonen, J, Lehto, VP. 2011. Utilising thermoporometry to obtain new insights into nanostructured materials, review part 1. J Therm Anal Calorim. 105:811821 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Riikonen, J, Salonen, J, Lehto, VP. 2011. Utilising thermoporometry to obtain new insights into nanostructured materials, review part 2. J Therm Anal Calorim. 105:823830 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Lettow, JS, Han, YJ, Schmidt-Winkel, P, Yang, PD, Zhao, DY, Stucky, GD, Ying, JY. 2000. Hexagonal to mesocellular foam phase transition in polymer-templated mesoporous silicas. Langmuir. 16:82918295 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Finke, HL, Gross, ME, Waddington, G, Huffman, HM. 1954. Low-temperature thermal data for the nine normal paraffin hydrocarbons from octane to hexadecane. J Am Chem Soc. 76:333341 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Parks, GS, Moore, GE, Renquist, ML, Naylor, BF, McClaine, LA, Fujii, PS, Hatton, JA. 1949. Thermal data on organic compounds. XXV. Some heat capacity, entropy and free energy data for nine hydrocarbons of high molecular weight. J Am Chem Soc. 71:33863389 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Courchinoux, R, Chanh, NB, Haget, Y. 1998. Use of “shape factors” as an empirical method to determine the actual characteristic temperatures of binary phase diagram by differential scanning calorimetry. Thermochim Acta. 128:4553 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Ventola, L, Calvet, T, Cuevas-Diarte, MA, Metivaud, V, Mondieig, D, Oonk, H. 2002. From concept to application. A new phase change material for thermal protection at −11 °C. Mat Res Innovat. 6:284290 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Lettow, JS, Han, YJ, Schmidt-Winkel, P, Yang, PD, Zhao, DY, Stucky, GD, Ying, JY. 2000. Hexagonal to mesocellular foam phase transition in polymer-templated mesoporous silicas. Langmuir. 16:82918295 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Cao, L, Man, T, Kruk, M. 2009. Synthesis of ultra-large-pore SBA-15 silica with two-dimensional hexagonal structure using triisopropylbenzene as micelle expander. Chem Mater. 21:11441153 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)