View More View Less
  • 1 Department of Applied Physics, Institute of Technology, Banaras Hindu University, Varanasi 221005, India om.pavansingh@gmail.com
Restricted access

Abstract

The glass-forming ability (GFA) of bulk metallic glasses (BMGs) has been analyzed on the basis of the thermodynamic parameters such as the specific heat difference ΔCpm between the undercooled liquid and corresponding equilibrium solid phase at the melting temperature Tm, entropy of fusion ΔSm, and the residual entropy ΔSR and characteristic temperatures, such as the Kauzmann temperature TK, glass transition temperature Tg, and the melting temperature Tm. The entire study is performed by analyzing the variation of critical cooling rate Rc with TK/Tm, ΔCpmSm, (TgTK)/Tm and ΔSRSm for a large number of BMGs. The variation of TK/Tm and ΔSRSm with ΔCpmSm has also been studied for BMGs. It has been found that materials having large ΔCpmSm exhibit large TK/Tm and such materials require low Rc for the glass formation. At the same time, it has also been found that materials having large TK/Tm exhibit low ΔSRSm and such materials need a low Rc for the glass formation. Attempt has also been made to correlate Rc with TK/Tm, ΔCpmSm, (TgTK)/Tm and ΔSRSm for BMGs.

  • 1.

    Chen, HS. 1980. Glassy metals. Rep Prog Phys. 43:353432 .

  • 2.

    Paul, A. 1982 Chemistry of glasses Chapman and Hall London .

  • 3.

    Uhlmann, DR. 1983. Glass formation, a contemporary view. J Am Ceram Soc. 66:95100 .

  • 4.

    Uhlmann, DR. 1972. A kinetic treatment of glass formation. J Non-Cryst Solids. 7:337348 .

  • 5.

    Dubey, KS, Ramachandrarao, P, Lele, S. 1996. Thermodynamic and viscous behaviour of undercooled liquids. Thermochimica Acta. 280 /281 2562 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Fang, C, Yinnan, H, Uhlmann, DR. 1983. A kinetic treatment of glass formation. VIII: critical cooling rates for Na2O–SiO2 and K2O–SiO2 glasses. J Non-Cryst Solids. 57:465471 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Weinberg, MC, Uhlmann, DR, Zanotto, ED. 1989. Nose method of calculating critical cooling rates for glass formation. J Am Ceram Soc. 72:20542058 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Johnson, WA, Mehl, RF. 1939. Reaction kinetics in processes of nucleation and growth. Trans AIMME. 135:416458.

  • 9.

    Avrami, M. 1939. Kinetics of phase change. I General theory. J Chem Phys. 7:11031112 .

  • 10.

    Long, ZL, Wei, HQ, Ding, YH, Zhang, P, Xie, GQ, Inoue, A. 2009. A new criterion for predicting the glass-forming ability of bulk metallic glasses. J Alloys Compd. 475:207219 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Lu, ZP, Bei, H, Liu, CT. 2007. Recent progress in quantifying glass-forming ability of bulk metallic glasses. Intermetallics. 15:618624 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Lu, ZP, Liu, CT. 2003. Glass formation criterion for various glass-forming systems. Phys Rev Lett. 91:115505-1-4.

  • 13.

    Xu, D, Wirth, BD, Schroers, J, Johnson, WL. 2010. Calculating glass-forming ability in absence of key kinetic and thermodynamic parameters. Appl Phys Lett. 97:024101-1-3.

    • Search Google Scholar
    • Export Citation
  • 14.

    Zhang, GH, Chou, KC. 2009. A criterion for evaluating glass-forming ability of alloys. J Appl Phys. 106:094902-1-4.

  • 15.

    Suo, ZY, Qiu, KQ, Li, QF, You, JH, Ren, YL, Hu, ZQ. 2010. A new parameter to evaluate the glass-forming ability of bulk metallic glasses. Mater Sci Eng A. 528:429433 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Adam, G, Gibbs, JH. 1965. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys. 43:139146 .

  • 17.

    Kauzmann, W. 1948. The nature of the glassy state and the behavior of liquids at low temperatures. Chem Rev. 43:219256 .

  • 18.

    Flory, PJ. 1953 Principle of polymer chemistry Cornell University Press Ithaka, NY.

  • 19.

    Sanchez, IC. 1974. Towards a theory of viscosity for glass-forming liquids. J Appl Phys. 45:42044214 .

  • 20.

    Dubey, KS, Ramachandrarao, P. 1984. On the free energy change accompanying crystallization of undercooled melts. Acta Metall. 32:9196 .

  • 21.

    Gibbs, JH, Dimarzio, EA. 1958. Nature of the glass transition and the glassy state. J Chem Phys. 28:373383 .

  • 22.

    Busch, R, Liu, W, Johnson, WL. 1998. Thermodynamics and kinetics of the Mg65Cu25Y10 bulk metallic glass forming liquid. J Appl Phys. 83:41344141 .

  • 23.

    Glade, SC, Busch, R, Lee, DS, Johnson, WL. 2000. Thermodynamics of Cu47Ti34Zr11Ni8, Zr52.5Cu17.9Ni14.6Al10Ti5 and Zr57Cu15.4Ni12.6Al10Nb5 bulk metallic glass forming alloys. J Appl Phys. 87:72427248 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Lu, ZP, Hu, X, Li, Y. 2000. Thermodynamics of La based La–Al–Cu–Ni–Co alloys studied by temperature modulated DSC. Intermetallics. 8:477480 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Lu, ZP, Li, Y, Liu, CT. 2003. Glass-forming tendency of bulk La–Al–Ni–Cu–(Co) metallic glass-forming liquids. J Appl Phys. 93:286290 .

  • 26.

    Singh, PK, Dubey, KS. 2010. Analysis of thermodynamic behaviour of bulk metallic glass forming melts and glass forming ability. J Therm Anal Calorim. 100:347353 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    An-H, Cai, Chen, H, Li, X, Wang, H, Zhau, Y, An, W. 2007. An expression for the calculation of Gibbs free energy difference of multi-component bulk metallic glasses. J Alloys Comp. 430:232236 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Gallino, I, Shah, MB, Busch, R. 2007. Enthalpy relaxation and its relation to the thermodynamics and crystallization of the Zr58.5Cu15.6Ni12.8Al10.3Nb2.8 bulk metallic glass-forming alloy. Acta Mater. 55:13671376 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Legg, BA, Schroers, J, Busch, R. 2007. Thermodynamics, kinetics, and crystallization of Pt57.3Cu14.6Ni5.3P22.8 bulk metallic glass. Acta Mater. 55:11091116 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Fan, GJ, Loffler, JF, Wunderlich, RK, Fecht, HJ. 2004. Thermodynamics, enthalpy relaxation and fragility of the bulk metallic glass-forming liquid Pd43Ni10Cu27P20. Acta Mater. 52:667674 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Cai, AH, Xiong, X, Liu, Y, Chen, H, An, WK, Li, XS, Zhou, Y, Luo, Y. 2008. Estimation of Kauzmann temperature and isenthalpic temperature of metallic glasses. Eur Phys J. B64:147151.

    • Search Google Scholar
    • Export Citation
  • 32.

    Aly, KA, Dahshan, A, Saddeek, YB. 2010. Effect of MoO3 additions on the thermal stability and crystallization kinetics of PbO–Sb2O3–As2O3 glasses. J Therm Anal Calorim. 100:543549 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Sunol, JJ, Bonastre, J. 2010. Crystallization kinetics of metallic glasses. J Therm Anal Calorim. 102:447450 .

  • 34.

    Marquesi, AR, Delben, JRJ, Delben, AAST. 2009. Glass forming ability and thermal stability of oxyfluoride glasses. J Therm Anal Calorim. 96:403406 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Delbreilh, L, Negahban, M, Benzohra MLacabanne, C, Saiter, JM. 2009. Glaass transition investigated by a combined protocol using thermostimulated depolarization currents and differential scanning calorimetry. J Therm Anal Calorim. 96:865871 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Shaaban, ER, Cansal, I, Shabaan, M, Ferreira, JMF. 2009. Thermal stability and crystallization kinetics of ternary Se–Te–Sb semiconducting glassy alloys. J Therm Anal Calorim. 98:347354 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Czeppe, T. 2010. Mechanism and kinetics of nano-crystallization of thermally stable Ni Nb (Zr Ti) Al metallic glasses. J Therm Anal Calorim. 101:615622 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Xu, D, Johnson, WL. 2006. Crystallization kinetics and glass-forming ability of bulk metallic glasses Pd40Cu30Ni10P20 and Zr41.2Ti13.8Cu12.5Ni10Cu22.5 from classical theory. Phys Rev B. 74:024207-1-5.

    • Search Google Scholar
    • Export Citation
  • 39.

    Turnbull, D. 1969. Under what conditions can a glass be formed?. Contempt Phys. 10:473488 .

  • 40.

    Davies, HA. 1976. The formation of metallic glasses. Phys Chem Glasses. 17:159173.

  • 41.

    Dubey KS , Ramachandrarao P. Rate of entropy loss with temperature in liquids and its relation to glass forming ability of materials. Int J Rapid Solidif. 1984-1985;1: 114.

    • Search Google Scholar
    • Export Citation
  • 42.

    Mishra, RK, Dubey, KS. 2009. Glass forming ability of materials: a thermodynamic approach. J Non-Cryst Solids. 355:21992204 .

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)