View More View Less
  • 1 Key Lab. of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
  • | 2 School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
Restricted access

Abstract

The flow and thermal behavior of the phase change material in a novel geometry, namely, quadrantal cavity, is investigated numerically. The influences of curved wall temperatures of 32, 37, and 42 °C, the initial sub-cooling temperatures of 5, 10, and 15 °C which are lower than ambient temperature, are examined previously. Inclination angles for the range from 0 to 360° on flow and thermal performances are carefully studied. It is found that the inclination angles affects dramatically not only the time of complete thermal energy storage but also convection currents. The best performance is obtained for an inclination angle of 225°.

  • 1.

    Albright, G, Farid, M, Al-Hallaj, S. 2010. Development of a model for compensating the influence of temperature gradients within the sample on DSC-results on phase change materials. J Therm Anal Calorim. 101:11551160 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Agyenim, F, Hewitt, N, Eames, P, Smyth, M. 2010. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew Sust Energ Rev. 14:615628 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Zivkovic, B, Fujii, I. 2001. An analysis of isothermal phase change of phase change material within rectangular and cylindrical containers. Sol Energy. 70:5161 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Saha, SK, Dutta, P. 2010. Heat transfer correlations for PCM-based heat sinks with plate fins. Appl Therm Eng. 30:24852491 .

  • 5.

    Talati, F, Mosaffa, AH, Rosen, MA. 2011. Analytical approximation for solidification processes in PCM storage with internal fins: imposed heat flux. Heat Mass Transf. 47:369376 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Pal, D, Joshi, YK. 2001. Melting in a side heated tall enclosure by a uniformly dissipating heat source. Int J Heat Mass Transf. 44:375387 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Akgun, M, Aydin, O, Kaygusuz, K. 2007. Thermal energy storage behavior of a paraffin during melting and solidification. Energy Source Part A. 29:13151326 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Akgun, M, Aydin, O, Kaygusuz, K. 2007. Experimental study on melting/solidification characteristics of a paraffin as PCM. Energy Convers Manag. 48:669678 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Castell, A, Belusko, M, Bruno, F, Cabeza, LF. 2011. Maximisation of heat transfer in a coil in tank PCM cold storage system. Appl Energy. 88:1204127 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Shmueli, H, Ziskind, G, Letan, R. 2010. Melting in a vertical cylindrical tube: Numerical investigation and comparison with experiments. Int J Heat Mass Transf. 53:40824091 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Assis, E, Katsman, L, Ziskind, G, Letan, R. 2007. Numerical and experimental study of melting in a spherical shell. Int J Heat Mass Transf. 50:17901804 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Tan, FL, Hosseinizadeh, SF, Khodadadi, JM, Fan, LW. 2009. Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule. Int J Heat Mass Transf. 52:34643472 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Tyagi VV , Pandey AK, Kaushik SC, Tyagi SK. Thermal performance evaluation of a solar air heater with and without thermal energy storage. J Therm Anal Calorim. 2011. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Wang N , Zhang ZR, Zhu DS, Gao JW. The investigation of thermal conductivity and energy storage properties of graphite/paraffin composites. J Therm Anal Calorim. 2011. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Kao HT , Li M, Lv XW, Tan JM. Preparation and thermal properties of expanded graphite/paraffin/organic montmorillonite composite phase change material. J Therm Anal Calorim. 2011. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Mehling, H, Cabeza, LF. 2008 Heat and cold storage with PCM: an up to date introduction into basics and applications Springer-Verlag Berlin.

    • Search Google Scholar
    • Export Citation
  • 17.

    Voller, VR, Cross, M, Markatos, NC. 1987. An enthalpy method for convection/diffusion phase change. Int J Numer Methods Eng. 24:271284 .

  • 18.

    Brent, AD, Voller, VR, Reid, KJ. 1988. Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numer Heat Transf A Appl. 13:297318.

    • Search Google Scholar
    • Export Citation
  • 19.

    Zeng, JL, Cao, Z, Yang, DW, Xu, F, Sun, LX, Zhang, XF, Zhang, L. 2009. Effects of MWNTs on phase change enthalpy and thermal conductivity of a solid-liquid organic PCM. J Therm Anal Calorim. 95:507512 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Gui, XH, Lin, B, Guo, YX, Yuan, XG. 2011. Two-dimensional transient thermal analysis of PCM canister of a heat pipe receiver under microgravity. Appl Therm Eng. 31:735741 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Guo, CX, Zhang, WJ. 2008. Numerical simulation and parametric study on new type of high temperature latent heat thermal energy storage system. Energy Convers Manag. 49:919927 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Fluent 6 User's Guide, Fluent Inc, New Hampshire, USA, 2003.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 1 0 0
Jul 2021 1 0 0
Aug 2021 1 0 0
Sep 2021 3 0 0
Oct 2021 2 0 0
Nov 2021 2 0 0
Dec 2021 0 0 0