Authors:
Zoltán Sebestyén Institute of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Pusztaszeri út 59-67, Budapest 1025, Hungary

Search for other papers by Zoltán Sebestyén in
Current site
Google Scholar
PubMed
Close
,
Ferenc Lezsovits Department of Energy Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest 1111, Hungary

Search for other papers by Ferenc Lezsovits in
Current site
Google Scholar
PubMed
Close
,
Emma Jakab Institute of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Pusztaszeri út 59-67, Budapest 1025, Hungary

Search for other papers by Emma Jakab in
Current site
Google Scholar
PubMed
Close
, and
Gábor Várhegyi Institute of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Pusztaszeri út 59-67, Budapest 1025, Hungary

Search for other papers by Gábor Várhegyi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The thermal behaviours of a sewage sludge sample, woody (black locust, poplar and willow) and herbaceous (energy grass and wheat straw) biomass as well as mixed (sewage sludge and black locust in ratios 1:1 and 1:3) samples were compared under inert and oxidative atmosphere. The thermogravimetric experiments of each sample demonstrate that the beginning temperature of decomposition is similar in inert and oxidative atmospheres, i.e. the primary bond scissions are not affected by the atmosphere. Nevertheless, oxygen increases the decomposition rate and the volatile evolution of all samples at higher temperatures. Thermogravimetry/mass spectrometry (TG/MS) experiments have been performed to determine the mass loss of the samples and the formation of volatile products as a function of temperature in inert atmosphere. Wood and herbaceous biomass samples evolved various organic products (aldehydes, ketones, acids, furan derivatives, etc.) beside water and gaseous products. Sewage sludge released mainly water, carbon oxides, methane, hydrogen, hydrocarbons, ketones, acids as well as sulphur- and nitrogen-containing products. High heating value and low heating value of the samples have been determined by a bomb calorimeter. Principal component analysis (PCA) has been used to find statistical correlation between the data. The results unambiguously support the correlation between the thermogravimetric parameters (e.g. DTGmax) and the heating values of the samples.

  • 1.

    Kádár, Zs, Szengyel, Zs, Réczey, K. 2004. Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Ind Crop Prod. 20:103110 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Mothé, CG IC de Miranda 2009. Characterization of sugarcane and coconut fibers by thermal analysis and FTIR. J Therm Anal Calorim. 97:661665 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Mészáros, E, Jakab, E, Várhegyi, G, Szepesváry, P, Marosvölgyi, B. 2004. Comparative study of the thermal behavior of wood and bark of young shoots obtained from an energy plantation. J Anal Appl Pyrolysis. 72:317328 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Dumanli, AG, Tas, S, Yürüm, Y. 2011. Co-firing of biomass with coals–Part 1. Thermogravimetric kinetic analysis of combustion of fir (abies bornmulleriana) wood. J Therm Anal Calorim. 103:925933 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Rathore, NS, Panwar, NL. 2011. Design and development of energy efficient solar tunnel dryer for industrial drying. Clean Technol Environ Policy. 13:125132 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Mericq, JP, Laborie, S, Cabassud, C. 2011. Evaluation of systems coupling vacuum membrane distillation and solar energy for seawater desalination. Chem Eng J. 166:596606 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Bilgili, M, Yasar, A, Simsek, E. 2011. Offshore wind power development in Europe and its comparison with onshore counterpart. Renew Sustain Energy Rev. 15:905915 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Mabel, MC, Raj, RE, Fernandez, E. 2011. Analysis on reliability aspects of wind power. Renew Sustain Energy Rev. 15:12101216 .

  • 9.

    Bihari, P, Gróf, Gy, Gács, I. 2010. Efficiency and cost modelling of thermal power plants. Therm Sci. 14 3 821834 .

  • 10.

    Regulagadda, P, Dincer, I, Naterer, GF. 2010. Energy analysis of a thermal power plant with measured boiler and turbine losses. Appl Therm Eng. 30:970976 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Young, B. 2003. The gravity pump: a new approach to a natural energy water pump. J Power Energy. 217:4551 .

  • 12.

    Allan, G, Gilmartin, M, McGregor, P, Swales, K. 2011. Levelised costs of Wave and Tidal energy in the UK: cost competitiveness and the importance of “banded” renewable obligation certificates. Energy Policy. 39:2339 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Zhao, K, Liu, Y. 2009. Theoretical study on multi-effect solar distillation system driven by tidal energy. Desalination. 249:566570 .

  • 14.

    Fytili, D, Zabaniotou, A. 2008. Utilization of sewage sludge in EU application of old and new methods–A review. Renew Sustain Energy Rev. 12:116140 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Sánchez, ME, Menéndez, JA, Domínguez, A, Pis, JJ, Martínez, O, Calvo, LF, Bernad, PL. 2009. Effect of pyrolysis temperature on the composition of the oils obtained from sewage sludge. Biomass Bioenergy. 33:933940 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Werle, S, Wilk, RK. 2010. A review of methods for the thermal utilization of sewage sludge: The Polish perspective. Renew Energy. 35:19141919 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Fonts, I, Azuara, M, Gea, G, Murillo, MB. 2009. Study of the pyrolysis liquids obtained from different sewage sludge. J Anal Appl Pyrolysis. 85:184191 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Fassinou, WF, Sako, A, Fofana, A, Koua, KB, Toure, S. 2010. Fatty acids composition as a means to estimate the high heating value (HHV) of vegetable oils and biodiesel fuels. Energy. 35:49494954 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Al-attab, KA, Zainal, ZA. 2011. Design and performance of a pressurized cyclone combustor (PCC) for high and low heating value gas combustion. Appl Energy. 88:10841095 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    da Silva, MAVR, Pilcher, G, Santos, LMNBF, Lima, LMSS. 2007. Calibration and test of an aneroid mini-bomb combustion calorimeter. J Chem Thermodyn. 39:689697 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Rojas, A, Valdés, A. 2003. An isoperibol micro-bomb calorimeter for measurement of the enthalpy of combustion of organic compounds. Application to the study of succinic acid and acetanilide. J Chem Thermodyn. 35:13091319 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Shafizadeh, F. 1968. Pyrolysis and combustion of cellulosic materials. Adv Carbohydr Chem Biochem. 23:419474 .

  • 23.

    Mészáros, E, Jakab, E, Várhegyi, G. 2007. TG/MS, Py-GC/MS and THM-GC/MS study of the composition and thermal behaviour of extractive components of Robinia pseudoacacia. J Anal Appl Pyrolysis. 79:6170 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Jakab, E, Faix, O, Till, F. 1997. Thermal decomposition of milled wood lignins studied by thermogravimetry/mass spectrometry. J Anal Appl Pyrolysis. 40–41:171186 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Mészáros, E, Jakab, E, Várhegyi, G, Tóvári, P. 2007. Thermogravimetry/mass spectrometry analysis of energy crops. J Therm Anal Calorim. 88:477482 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Várhegyi, G, Antal, MJ, Székely, T, Till, F, Jakab, E. 1988. Simultaneous thermogravimetric-mass spectrometric studies of the thermal decomposition of biopolymers 1. Avicel cellulose in the presence and absence of catalysts. Energy Fuels. 2:267272 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Sebestyén, Z, May, Z, Réczey, K, Jakab, E. 2011. The effect of alkaline pretreatment on the thermal decomposition of hemp. J Therm Anal Calorim. 105:10611069 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Sjöström, E. 1981 Wood chemistry–Fundamentals and applications Academic Press New York.

  • 29.

    Wilson, L, Yang, W, Blasiak, W, John, GR, Mhilu, CF. 2011. Thermal characterization of tropical biomass feedstocks. Energy Convers Manag. 52:191198 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Villanueva, M, Proupín, J, Rodríguez-Anón, JA, Fraga-Grueiro, L, Salgado, J, Barros, N. 2011. Energetic characterization of forest biomass by calorimetry and thermal analysis. J Therm Anal Calorim. 104:6167 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Wesolowski, M, Konieczynski, P, Ulewicz-Magulska, B. 2001. Thermal decomposition of medicinal plant raw materials based on principal component analysis. J Therm Anal Calorim. 66:593601 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Szynkaruk, P, Wesolowski, M, Samson-Rosa, M. 2010. Principal component analysis of thermal decomposition of magnesium salts used as drugs. J Therm Anal Calorim. 101:505512 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2024 6 0 0
May 2024 7 0 0
Jun 2024 32 4 2
Jul 2024 23 0 0
Aug 2024 23 0 0
Sep 2024 58 0 0
Oct 2024 59 0 0