View More View Less
  • 1 DSM Resolve, Geleen, The Netherlands
  • | 2 Department of Chemistry, Rzeszów University of Technology, 35-959, Rzeszow, Poland
  • | 3 SciTe, Geleen, The Netherlands
Restricted access

Abstract

For the new Flash DSC 1, the temperature windows-to-operate—the temperature ranges where the real, achieved scan rate is constant—have been determined for unloaded sensors under various conditions like purge gas and flow rate variations; cooling to −90 °C and heating to 450 °C; scan rates from 1 up to 20,000 °C s−1 in heating and 15,000 °C s−1 in cooling. Compared to nitrogen, helium purge gas offers better access to low-temperature transitions and enables faster cooling. Drawback is the decreased temperature window-to-operate in heating at the high-temperature side. The temperature calibration protocol according to the recent DIN SPEC 91127 for sample mass and scan rate was found to be useful. The correction factors are maximal −1.4 °C as measured for 1 μg at 1,000 °C s−1 heating. Using liquid crystalline substances it was proved that the Flash DSC 1 has symmetry, meaning that calibration data found in heating also can be applied in cooling.

Graphical abstract

  • 1.

    Adamovsky, S, Minakov, A, Schick, C. 2003. Scanning microcalorimetry at high cooling rate. Thermochim Acta. 403 1 5563 .

  • 2.

    Allen, L, Ramanath, G, Lai, S, Ma, Z, Lee, S, Allman, D et al. 1994. 1,000,000 °C s−1 thin film electrical heater: in situ resistivity measurements of Al and Ti/Si thin films during ultra rapid thermal annealing. Appl Phys Lett. 64 4 417419 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Danley, RL, Caulfield, PA, Aubuchon, SR. 2008. A rapid-scanning differential scanning calorimeter. Am Lab. 40 1 911.

  • 4.

    Efremov, MY, Olson, E, Zhang, M, Lai, S, Schiettekatte, F, Zhang, Z et al. 2004. Thin-film differential scanning nanocalorimetry: heat capacity analysis. Thermochim Acta. 412 1 1323 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Efremov, MY, Olson, EA, Zhang, M, Zhang, Z, Allen, LH. 2004. Probing glass transition of ultrathin polymer films at a time scale of seconds using fast differential scanning calorimetry. Macromolecules. 37 12 46074616 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Efremov, MY, Warren, J, Olson, E, Zhang, M, Kwan, A, Allen, L. 2002. Thin-film differential scanning calorimetry: a new probe for assignment of the glass transition of ultrathin polymer films. Macromolecules. 35 5 14811483 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Mathot VBF , Poel GV, Pijpers TFJ. Benefits and potentials of high performance differential scanning calorimetry (HPer DSC). Handb Therm Anal Calorim. 2008;93: 31927.

    • Search Google Scholar
    • Export Citation
  • 8.

    Minakov, A, Adamovsky, S, Schick, C. 2005. Non-adiabatic thin-film (chip) nanocalorimetry. Thermochim Acta. 432 2 177185 .

  • 9.

    Minakov, AA, Schick, C. 2007. Ultrafast thermal processing and nanocalorimetry at heating and cooling rates up to 1 MK/s. Rev Sci Instrum. 78 7 073902073910 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Pijpers, TFJ, Mathot, VBF, Goderis, B, Scherrenberg, RL EW van der Vegte 2002. High-speed calorimetry for the study of the kinetics of (de) vitrification, crystallization, and melting of macromolecules. Macromolecules. 35 9 36013613 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Zhuravlev, E, Schick, C. 2010. Fast scanning power compensated differential scanning nano-calorimeter: 1. The device. Thermochim Acta. 505 1 113 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Zhuravlev, E, Schick, C. 2010. Fast scanning power compensated differential scanning nano-calorimeter: 2. Heat capacity analysis. Thermochim Acta. 505 1 1421 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Zhang, M, Efremov, MY, Schiettekatte, F, Olson, E, Kwan, A, Lai, S et al. 2000. Size-dependent melting point depression of nanostructures: nanocalorimetric measurements. Phys Rev B. 62 15 10548 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Recommendation for temperature calibration of fast scanning calorimeters (FSCs) for sample mass and scan rate. DIN SPEC 91127. Berlin: DIN Deutsches Institut für Normung e. V.; 2011.

    • Search Google Scholar
    • Export Citation
  • 15.

    Iervolino, E A van Herwaarden F van Herwaarden E van de Kerkhof P van Grinsven Leenaers, A et al. 2011. Temperature calibration and electrical characterization of the differential scanning calorimeter chip UFS1 for the Mettler-Toledo Flash DSC 1. Thermochim Acta. 522 1 5359 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Mathot, V, Pyda, M, Pijpers, T, Vanden Poel, G E Van de Kerkhof S Van Herwaarden et al. 2011. The Flash DSC 1, a power compensation twin-type, chip-based fast scanning calorimeter (FSC): first findings on polymers. Thermochim Acta. 522 1 3645 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    S van Herwaarden Iervolino, E F van Herwaarden Wijffels, T, Leenaers, A, Mathot, V. 2011. Design, performance and analysis of thermal lag of the UFS1 twin-calorimeter chip for fast scanning calorimetry using the Mettler-Toledo Flash DSC 1. Thermochim Acta. 522 1 4652 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    PerkinElmer. www.hyperdsc.com.

  • 19.

    Schick, C. 2009. Differential scanning calorimetry (DSC) of semicrystalline polymers. Anal Bioanal Chem. 395 6 15891611 .

  • 20.

    Flynn, JH. 1974. Thermodynamic properties from differential scanning calorimetry by calorimetric methods. Thermochim Acta. 8 1 6981 .

  • 21.

    Sarge, SM, Gmelin, E, Höhne, GWH, Cammenga, HK, Hemminger, W, Eysel, W. 1994. The caloric calibration of scanning calorimeters. Thermochim Acta. 247 2 129168 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Vanden Poel G , Mathot VBF. High-speed/high performance differential scanning calorimetry (HPer DSC): temperature calibration in the heating and cooling mode and minimization of thermal lag. Thermochim Acta. 2006; 446(1):41-54.

    • Search Google Scholar
    • Export Citation
  • 23.

    Neuenfeld, S, Schick, C. 2006. Verifying the symmetry of differential scanning calorimeters concerning heating and cooling using liquid crystal secondary temperature standards. Thermochim Acta. 446 1 5565 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Sarge, SM, Hoehne, GWH, Cammenga, HK, Eysel, W, Gmelin, E. 2000. Temperature, heat and heat flow rate calibration of scanning calorimeters in the cooling mode. Thermochim Acta. 361 1 120 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Neuenfeld S . Mettler-Toledo; 2007. p. 910.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)