Authors:
J. Behnisch Institut für Polymerenchemie der Akademie der Wissenschaften der DDR Teltow DDR

Search for other papers by J. Behnisch in
Current site
Google Scholar
PubMed
Close
,
E. Schaaf Institut für Polymerenchemie der Akademie der Wissenschaften der DDR Teltow DDR

Search for other papers by E. Schaaf in
Current site
Google Scholar
PubMed
Close
, and
H. Zimmermann Institut für Polymerenchemie der Akademie der Wissenschaften der DDR Teltow DDR

Search for other papers by H. Zimmermann in
Current site
Google Scholar
PubMed
Close
Restricted access
On the basis of the formal basic relation
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\frac{{d\alpha }}{{dt}} = A \cdot e^ - \frac{E}{{RT}}(1 - \alpha )^n$$ \end{document}
methods of calculating kinetic values from non-isothermal thermogravimetric curves have been critically evaluated. It has been established that in general integral methods are preferable to differential methods. Methods basing on a series expansion of the exponential integral
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\int\limits_0^T {e^ - \frac{{ET}}{{RT}}} dT$$ \end{document}
are applicable without limitations to any cases. It has been concluded that the integral method suggested by Zsakó is the most reliable.
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2023 10 0 0
Jan 2024 3 0 0
Feb 2024 2 1 0
Mar 2024 0 0 0
Apr 2024 3 0 0
May 2024 0 0 0
Jun 2024 0 0 0