Authors:
D. J. Hucknall Department of Chemistry The City University London UK

Search for other papers by D. J. Hucknall in
Current site
Google Scholar
PubMed
Close
and
C. F. Cullis Department of Chemistry The City University London UK

Search for other papers by C. F. Cullis in
Current site
Google Scholar
PubMed
Close
Restricted access

Studies of the thermal behaviour of binary oxide mixtures containing vanadium(V) oxide (V2O5-TiO2, V2,O5- MoO3, V2,O5-ZrO2 and V2O5-ZnO) have shown that the evolution of gaseous oxygen at fairly low temperatures is characteristic of those systems which are eflective catalysts for the oxidation of hydrocarbons. No weight changes were observed with V2, O5-ZnO mixtures under these conditions and, in accordance with this, zinc(II) oxide does not enhance the catalytic activity of vanadium(V) oxide. In V2O5-containing systems, evolution of oxygen occurs during the reduction of V2O5 to V2O4. This process is accelerated in the presence of certain metal oxides and such acceleration may be caused by structural interactions at the interface of the oxides. Among the systems studied, the formation of compounds such as Mo6V9O40 is thought to be of little significance from the catalytic point of view.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2024 8 0 0
May 2024 3 0 0
Jun 2024 2 0 0
Jul 2024 4 0 0
Aug 2024 10 1 1
Sep 2024 6 0 0
Oct 2024 2 0 0