View More View Less
  • 1 Departamento de Química Inorgánica de la Facultad de Ciencias de la Universidad de Sevillay, Departamento de Investigaciones Físicas y Químicas Centro Coordinado del C.S.I.C. Sevilla Spain
Restricted access

The computer kinetic analysis of simultaneously obtained TG and DTG curves of CaCO3 decomposition has been carried out. Ten different kinetic equations have been tested to decide the mechanism which drives the reaction. Either a two-thirds kinetic equation (phase boundary process) or a Jander equation (diffusion process) satisfactorily describe the kinetic data of both decomposition curves. From these results we conclude there is no chance of differentiating between these two mechanisms by only the kinetic analysis of TG and DTG curves separately.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
per Year
per Year
Founder Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)