The thermal dehydration and decomposition of copper(II) phthalate monohydrate was studied by isothermal and non-isothermal methods. The decomposition process consisted of three steps: two steps of dehydration and the third of decomposition. The kinetics of isothermal dehydration reactions follow (i) a unimolecular law up to the formation of copper(II) phthalate hemihydrate, and (ii) a phase boundary model giving anhydrous copper(II) phthalate, while the kinetics of isothermal decomposition reaction comply with the Erofeev-Avrami equation, [−ln(1−α)]1/n=Kt+C. The energies of activation for the formation of the decomposition products were calculated. The decomposition products were characterized by elemental analysis, photomicrographic observations, infrared and reflectance spectra and X-ray powder diffraction data.