Authors:
M. AvellaIstituto di Ricerche su Tecnologia dei Polimeri e Reologia del CNR 80072 Arcofelice NA

Search for other papers by M. Avella in
Current site
Google Scholar
PubMed
Close
,
E. MartuscelliIstituto di Ricerche su Tecnologia dei Polimeri e Reologia del CNR 80072 Arcofelice NA

Search for other papers by E. Martuscelli in
Current site
Google Scholar
PubMed
Close
, and
M. Pracella
Restricted access

The crystallization and melting behaviour of isotactic polypropylene (iPP) samples synthetized with different catalyst systems (low and high-yield) have been studied by differential scanning calorimetry and optical microscopy. The isothermal crystallization rates from the melt have been found to depend on the catalyst system employed and on the isotacticity index of the sample. Moreover, for low-yield iPP, Avrami analysis of the overall kinetics has provided evidence of the presence of secondary crystallization phenomena. The values of the equilibrium melting point, energy of nucleation and surface energy of folding of iPP lamellar crystals have been calculated according to the ‘Kinetic theories’ of polymer crystallization. The observed variation of such thermodynamic parameters for the various iPP samples has been accounted for by the amount and type of configurational irregularities present along the chains and by the differences in the molecular weight distribution.

  • Collapse
  • Expand
  • Top

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2022 0 0 0
May 2022 0 0 0
Jun 2022 1 0 0
Jul 2022 0 0 0
Aug 2022 1 0 0
Sep 2022 0 0 0
Oct 2022 0 0 0

Geopolymers

Inorganic polymeric new materials

Author:
J. Davidovits