View More View Less
  • 1 Department of Chemistry Rensselaer Polytechnic Institute 12181 Troy New York
  • | 2 Personal Products 08850 Milltown New Jersey
Restricted access

It is shown that heat capacities of linear macromolecules consisting of all-carbon single-bonded backbones can be calculated from the appropriate contributions of substituted carbon atoms to a precision of about − 0.2±2.5% (155 data points), which is similar to the experimental precision. Heat capacity contributions of 42 groups are given over the full range of measurement and reasonable extrapolation. The quality of the addition scheme is tested on 16 series of measurements on homopolymers, copolymers and blends. The addition scheme works for all these different states of aggregation of the constituent groups. The basis of the addition scheme is discussed.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
per Year
per Year
Founder Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)