Authors:
R. K. Singh RamanMaterials Development Laboratory Indira Gandhi Centre for Atomic Research 603 102 Kalpakkam India

Search for other papers by R. K. Singh Raman in
Current site
Google Scholar
PubMed
Close
,
F. C. ParidaSafety Research Laboratory Indira Gandhi Centre for Atomic Research 603 102 Kalpakkam India

Search for other papers by F. C. Parida in
Current site
Google Scholar
PubMed
Close
, and
A. S. KhannaMaterials Development Laboratory Indira Gandhi Centre for Atomic Research 603 102 Kalpakkam India

Search for other papers by A. S. Khanna in
Current site
Google Scholar
PubMed
Close
View More View Less
Restricted access

Although liquid sodium has proved to be a technologically superior and economically viable coolant in the heat-exchange circuits of fast reactors, it is fraught with the serious problems of fire hazards in the event of accidental leakages into the ambient air. For the rapid and effective suppression of sodium fires, sodium bicarbonate has emerged as a potential extinguishant. This paper attempts a description of the thermal decomposition behaviour of sodium bicarbonate fine powder in vacuum on the basis of thermogravimetry and differential thermal analysis. The analog percentage mass change data, transformed into dimensionless extents of reaction and calculated rates of reaction, are then analysed by a generalized computational technique. The results indicate that the most probable rate-controlling step is a process of three-dimensional contraction of the bicarbonate particle surface, with activation energyE=82.94 kJ mol−1 and frequency factorA=34.73×106 s−1. The decomposition temperature of sodium bicarbonate shows an upward trend with increasing heating rate.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2022 2 0 0
Nov 2022 0 0 0
Dec 2022 0 0 0
Jan 2023 0 0 0
Feb 2023 0 0 0
Mar 2023 2 0 0
Apr 2023 0 0 0